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Abstract— Tree search schemes are an efficient means of The remainder of this paper is structured as follows:
solving the detection problem in MIMO systems. There exist two Section Il discusses the system model and parameters used fo
fundamentally different approaches when using such techniques e rformance evaluations. Section Il provides an intrdidac
for soft output detection. The traditional way is to employ a tot h based MIMO detecti I t
single undirected search to generate a list of hypotheses on the 0 tree search base € eC.IOI"I, as_ wellas aﬂ as;essmen
transmit signal. Alternatively, multiple directed searches can be Of the performance and complexity achievable with différen
used — Smart Candidate Adding. This paper provides a detailed schemes. This is followed by a description of Smart Candidat
assessment of the complexity and performance of different tree Adding in Section IV. Section V and VI present results
search schemes, when following the single search approach. Basecfor the case of non-iterative and iterative detection-déuy,

on these results, suitable component tree search techniques for tivelv. We finallv d USi in Section VII
Smart Candidate Adding are selected. It is shown that employ- respectively. vve Tinally draw conclusions In section Vil

ing a breadth-first tree search scheme (more specifically, the
M-Algorithm) offers several advantages over other approachs.

Il. SYSTEM MODEL
Consider aNt x Ng MIMO system based on a BICM
|. INTRODUCTION transmit strategy: the vecton of i.i.d. information bits is
Future wireless communications systems will make us#icoded and interleaved. The resulting code bit stream is
of multiple antennas at transmitter and receiver to inereapartitioned into blocksc of Nr - L bits and mapped onto
spectral efficiency. The main challenge for such MIMO sys vector symbolx whose components are taken from some
tems lies in the non-orthogonality of the transmission cledn complex constellatio®. Here, L denotes the number of bits
which renders the correct separation of the transmitted dger symbol, allowing to distinguish betweéh = |C| = 2&
streams at the receiver a challenging task. This task can diéerent constellation points. We consider transmissiver
solved effectively by using Turbo processing, i.e., exgjiag a flat fading channel. In the equivalent base-band model, the
probabilistic feedback (soft information) between theenn received signay is given by:
MIMO detector and the outer channel decoder. In this context
tree search based detection techniques are known to enable
a performance close to channel capacity, while avoiding thghere H ¢ CN&*N7 js the channel transfer matrix which
prohibitive complexity of the a posteriori probability (R is assumed to be perfectly known at the receiver. The en-
detector. Sphere [1], sequential [2] and M-algorithm basedes of H are realizations of zero mean i.i.d. complex
detection [3] are representative examples of such schemesGaussian random processes of variaficgpassive subchan-
However, the application of the Turbo principle requires thnels). The average transmit energy is normalized such that
detector to generate precise information on the religbdt £{xx"} = E,/Nr 1. The vectorn € CNz*1 represents the
each of the received bits. This poses a significant challengeiver noise whose components are zero mean i.i.d. com-
for the straightforward “list” extensions of the aforemiened plex Gaussian random variables with variarég/2 per real
algorithms: In order to ensure a high accuracy of the saftmension:£{nn"} = N, I. The signal-to-noise ratio (SNR)
output, the list size has to be chosen very large — whigh each receive antenna is hence given by SNR, /N,.
obviously entails high detection complexity. Therefotewas
proposed in [4]-[6] to generate the soft output by usin@ IE%?&'I I I I ICTES,!‘Z?""
multiple instances of a Schnorr-Euchner sphere detecch e l l
of which searches only for a single leaf node (list size 1). At
first, a search for the MAP estimate is performed, followed AWGN_N%' %
y
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by a set of searches for counter-hypotheses to this estimate rDeen .
The term Smart Candidate Adding (SCA) has been coine be] 11 |‘L‘@_‘1 e [+
proposal to other tree search based detection techniques an oo T e

discuss which algorithms are best suited to achieve a fal®ra

for this strategy in [4]. In this contribution, we extend ghi
trade-off between performance and detection complexity. Fig. 1. System model with BICM transmitter and iterative reeei
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To ensure comparability of results, we use a setup equitvaléine path metrlcsz A,, to control which tree nodes are
to the one in [1], [2]: A rate 1/2 PCCC based dnr,5) added to the Worklng stack and in which order.
convolutional codes is employed for transmission over aA major problem for all these schemes are missing counter-
4 x 4 MIMO channel which is spatially and temporally i.i.d.hypotheses: whenevef N X,fll = (), the magnitude of the
fading. The information block size (including tail bits)9216 LLR for the corresponding bit cannot be determined from
bits. The PCCC decoder uses 8 internal iterations (logMARe entries of£. The standard way of addressing this issue
decoding). In the iterative setup, 4 iterations betweeedaet is to simply clip the magnitude of the soft output to a certain
and decoder are performed. predefined value [1]. However, the performance of the system
is very sensitive to the choice of the clipping level, esaligi
1. TREE SEARCH BASED MIMO DETECTION for smaller list sizes (see [3] and Section VI).

A. Fundamentals
B. Classification of Tree Search Strategies

The task of the detector is to calculate the a posteriori . .
probability for each of the code bits, ; in x. Since we are Tree search algorithms have been the subject of extensive
dealing with binary numbers, this information is convetlien study .already in the 1960ies, in the conte>§t of sequgntlal
expressed in the form of log-likelihood ratios (LLRS): decoding. Based on the framework presented in [7], we discer

the following three representative classes of algorithms:

L( ) ::mw « Depth-first searchis a scheme which only considers a
Plep = —1ly] single tree node at a time. This node is extended until

— |y - Bx|* HX|| Nr-L its path metric_falls below a given threshold, in Which_
eren)?fll + Z In P[c;] case the algorithm back-tracks and extends the tree in

a different direction. The sphere detector [1], [8] is an
— max {} o) instance of this approach. The challenge lies in finding
xeX, an appropriate value for the threshold gmhere radius
A very attractive solution is to start with an extreme
value and successively refine the threshold during the tree
search, based on the path metrics of found leaf nodes [9].
o Metric-first searchkeeps track of a number of nodes
simultaneously, and always extends the node which has
currently the largest path metric. The list sequential
(LISS) detector [2] implements this strategy. The very
high storage requirements are the main disadvantage of
this technique. As soon as the number of considered paths
exceeds the size of the working stack, the paths with the
smallest metrics have to be dropped [2], or the search
must be stopped and the LISS declares an erasure [10].
« Breadth-first searchextends the tree layer-by-layer. At
each depth, thé/ nodes with the largest path metrics
are retained and all other nodes are dropped. The classical
example for this approach is the M-Algorithm [3]. The
advantage of this technique is the fixed detection com-
plexity. However, the achievable performance is limited
by error propagation, particularly for low values df.

} Note that the first two schemes have a variable complexity,

where the second line follows from the application of the so-
called max-log approximation. Heréfil denotes the set of
2N7-L=1 symbolsx € X for which ¢,,; = £1. Evaluating
(2) by a brute-force approach (maxLogAPP detection) is
well known to require an effort growing exponentially in
the number of transmitted bits per vector symbol. However,
only a few hypotheses mﬂfil actually maximize each of
the respective terms in (2). Several close-to- -optimal diete
strategies therefore construct a subsetfist X from which

the LLRs are determined. The subset should on the one hand
include only a fraction of the elements froAi to minimize
complexity. On the other hand, it should be large enough
to allow approaching the true detector LLRs as closely as
possible, to maximize performance. Let the size of thedist
be denoted ad/ = |L|. Tree search based MIMO detection
techniques construct using a back-substitution approach.
After a QR-decomposition dfl, the LLRs can be determined
using the per-antenna metric increments:

Nrp
L(cmily) = max {Z Am} — max {ZA which might be undesirable from an implementation perspec-
1 tive. Furthermore, both the average and (the potentialty ve
which are referred to alsranch metricsand are given by high) worst case complexity depend on the operating SNR.
1. Nt 2
Am = —NoHym B Z T'm.j ¥ Layer ordering and MMSE preprocessing can be used to
= improve the performance-complexity trade-off achievataild
with y = QMy. The detector starts in layar= N, and works tree search schemes. More specifically, they will enhance
its way up until layern = 1 is reached. For each branchperformance for schemes with fixed or (tightly) upper bowhde
in the tree, different choices are possible for the signatomplexity [11], and reduce complexity for schemes with
estimatezx,,,. The detection process can hence be interpretedriable complexity [9], [12]. However, the use of MMSE

as a search for leaf nodes in a tree structure. Differentstypgareprocessing introduces a bias on the calculated metrics,
of tree search based detectors can be implemented by usiddch should be removed to maximize performance [11].

xeLnxtt
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C. Preprocessing and Enumeration Aspects
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In order to facilitate the use of efficient enumeration strat The complexity of the Schnorr-Euchner sphere detector (SE-
gies (see below), the tree search should be performed 0%@) and the LISS has been upper bounded to double the
real-valued system model of doubled dimensions and a reabmplexity of an M-Algorithm which generates a list of the
valued constellation of siz¢/Q (see e.g. [9] for details). same sizéV/. This bound was chosen based on the analysis of

For the case of higher order modulation, a further substantthe distribution of the SE-SD and LISS complexity for theecas
complexity reduction is enabled by using a Schnorr-Euchnef hard output detectiond( = 1, results not shown). It has
enumeration strategy [8]: the child nodes of a parent nobleen found to yield reasonable performance fdral MIMO
are generated in descending order of their branch mefrics setup with constellation sizes from 4-QAM up to 64-QAM.
While this technique has been mainly studied in the contextFor a list size ofA/ = 2, the performance of all three
of sphere detection, it is readily applicable to all treerslea investigated tree search schemes is enhanced by using MMSE
schemes. In fact, it was shown in [13] that the Schnorr-Eachrpreprocessing. The best performance is achieved by the LISS
LISS detector without length bias term visits the least nembdetector. For larger list sizes\{ = 16), the gain from using
of tree nodes among all optimal search algorithms. MMSE preprocessing decreases for both the LISS and the

For the M-Algorithm, the Schnorr-Euchner strategy caMl-Algorithm (this has also been noted in [11]). For the LISS,
be pragmatically implemented as follows: First, for each dhere is even a slight loss w.r.t. the ZF case. This is duedo th
the M kept nodes, the child node with the largest metric ikelatively low worst case complexity of the LISS for the case
generated, resulting in a total aff new nodes. A threshold of unbounded complexity. The imposed upper bound on the
is set to theMth largest path metric. Subsequently, the nextumber of branch metric computations has therefore almost
M child nodes are generated. For each parent node whegeimpact and loss in performance due to the sub-optimality
the metric of the new child node is below the threshold, thstroduced by MMSE preprocessing [9] is the dominating
extension process can be stopped. The threshold is updaa#ieict. For the sphere detector, however, the gains fromgusi
and the process continues until no further child nodes nelMSE preprocessing are higher for larger list sizes. Thig is
to be generated. The achieved complexity reduction fastordirect result of the radius determination strategy: Theesph
around,/Q/3 for 64-QAM transmission, compared tgQ /2 radius can only be fixed onckl leaf nodes have been found.
for the LISS and the sphere detector. Note, however, that Bais results in a high worst case complexity for large values
soon as a priori information has to be incorporated into tteé M, if the initially found leaf nodes are far away from the
branch metrics, implementing a Schnorr-Euchner enuneeratiMAP estimate (as is the case for ZF preprocessing). It can
strategy requires the explicit calculation of the metriosdll also be seen that the performance of all investigated scheme

children of a parent node and subsequent sorting. is very similar for M = 16, if MMSE-SQRD preprocessing
is employed.
D. Comparison of Technigues
4
Results for the performance of different tree search tech- 10 ‘ f f ‘ ‘ ~ [aSE-SD
nigues are provided in Figure 2 for a non-iterative deteetio ~ , OLISS
decoding setup. All schemes employ Schnorr-Euchner erumel o M-Algorithm
ation and a sorted QR decomposition [14] for preprocessing. ]
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the three investigated tree search schemes. For the LISS and

Fig. 2. Performance of tree search detectidnx(4 MIMO, 64-QAM). the sphere detector, the upper markers indicate the impgsed
Dashed curves: ZF preprocessing, solid curves: MMSE poejssing. per bound (i.e., the worst-case complexity§f;**). The lower



markers indicate the average complexityN,,}. Consistent complexity. This is a first hint that the sphere detector maty n
with the results from [13], the complexity of the LISS isbe best suited as tree search scheme for the SCA approach.
in general lower than that of the SE-SD. The complexity A beneficial “side effect” of Smart Candidate Adding is that
reduction enabled by using MMSE preprocessing is arouitcentirely avoids the problem of missing counter-hypotises
20% (results for the ZF case not shown). Note that the averadewever, bounding the tree search complexity may still kead
complexity of all schemes is typically within a factor two ofoverestimated LLR magnitudes, which would necessitate the
each other, with some advantages for the M-Algorithm foyveuse of LLR clipping. Fortunately, the performance of reduce
small list sizes, and the LISS for large list sizes. In liglit occomplexity Smart Candidate Adding has been found to be very
the high storage and memory access requirements of the LIB#ust to the choice of the LLR clipping level.
the sphere detector and the M-Algorithm emerge as the m%st
promising technigues from an implementation perspective. ~
Observe that for the high raw BERs (around 10%) at which In principle, any combination of the techniques introduced
powerful Coding schemes operatE, the average Comp'exityi@fsection Il is pOSSible for use in the first and the Subseque
the sphere detector is comparable to that of the M-Algorithri€arch stages of the SCA approach. From the available sption
The often claimed lower average complexity of the sphefge following assignment of techniques is expected to aehie
detector does only hold in the high SNR regime, at target BERgfavorable trade-off between performance and complexity:
which might be uninteresting for practical applicationsir= « The search for the MAP estimatwill cover the whole
thermore, the M-Algorithm is typically run without Schnerr signal set¥ and should be done such that errors in the
Euchner enumeration, which renders the comparison umfair i hard output of the MIMO detector are avoided, i.e., the

Choice of Component Techniques

favor of Schnorr-Euchner sphere detection. MAP estimate has to be found with high probability. This
can be assured by using either a sphere or LISS detector
IV. SMART CANDIDATE ADDING with upper bounded complexity, or an M-Algorithm with

large enough list size.
« Each singlesearch for a counter-hypothesisill cover
From (2) it is easily seen that the LLRs at the output of the  only a constrained signal sat """ This is the compu-

A. Fundamentals

maxLogAPP detector may also be written in the form: tationally most expensive part, since the involved effort
ARl NooL scales with the number of transmit?ed bits per yector

Liemily) = e (1 = |y — HxMA®|| N Z I P[MAP] symbol. The use of a LISS detector is less attractive for
matlY ™! Ny — ¢ solving this task, due to its high storage requirements and

H - H2 NT;*I the fact that the algorithm may produce erasures if a too

v — Hx : o
~ mayx { yN i Z lnp[ci]} ) St-I‘ICt upper bound on the complexity is |mpgsed.

x€X, 0 i=1 Motivated by the above arguments, the focus in the subse-

(4) quent investigations will be on using a Schnorr-Euchneesph
) ) ) o detector or an M-Algorithm for the tree search. It is evidient
with xM4" as the hypothesis which maximizes the a postgpssible to obtain comparable results by using a LISS dtect
riori probability (the MAP estimaty; ¢"*” the corresponding jn the first search stage. The difference in complexity can be
bit pattern andt,./*" the set of potential counter-hypothesesyetermined based on the results presented in Section Il

for which ¢,,, ; = —cMAP. The maxLogAPP detection problem
may hence be solved by first finding the MAP estimate and V. NON-ITERATIVE DETECTION-DECODING

then performingNr - L searches which cover only a subset of Consider first the case of Schnorr-Euchner sphere detection
the transmitter signal set. This fact has already been wkder (this is the original SCA proposal). Figure 4 provides resul
in [15] in the context of a semi-definite relaxation appraachior the complexity of the search for counter-hypotheses Th
A direct implementation of (4) has been proposed in [5], [6khallenges faced by this approach are clearly visible: avhil
employing a radius-based Fincke-Pohst sphere detector 8 some bits, the average tree search complexity is still
to determine the MAP estimate and the counter-hypothesasceptable, it is extremely high for others. The peaks in the
However, this approach faces the problem of choosing aomplexity distribution corresponds to the most relialits im
appropriate value for the sphere radius. Furthermore, tir& w each layer (Gray mapping is used). This behavior is expected
concentrated on the case of QPSK transmission ih>a4 as a high reliability is synonymous to a large distance of
MIMO setup, where the MaxLogAPP detection problem hahe counter-hypothesis to the MAP estimate, and thus a high
still manageable complexity (see also results in Section VInumber of nodes which have to be visited. The total average
In [4], it was proposed to use a Schnorr-Euchner sphezemplexity of this scheme is on the orderiof* branch metric
detector for the searches, thus avoiding the radius determomputations — a factor 5-10 higher than a standard sphere
nation problem. The technique was also applied to highdetector with list sizeM = 64 which achieves comparable
order modulation (16- and 64-QAM), where it became evideperformance (cf. Figures 3 and 5).
that some bounds on the number of visited nodes have tdn order for the SE-SD based SCA approach to become
be imposed in order to avoid unreasonably high detecticompetitive, it is thus necessary to accept some inaccuracy
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in the soft output and upper bound the complexity of the%_ N < 64
tree searches. In the following, the term}/4F refers to Eg ¢
the number of branch metric computations in the search forZi0% NCH & 39 1
the MAP estimate whileVH is the complexity of each of oM -
the individual searches for a counter-hypothesis. Pedooe o= M= d M=
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results for such a setup are presented in Figure 5. A maximun IM =16
of N{# = 64 branch metric computations for the second M; =16
stage searches suffices to achieve performance within B.25d M; = 8%
of MaxLogAPP detection (results faN 4P N{H — o). *
It can also be seen that investing onW/4” = 30 branch . My =4 NCH <3
L ‘ ‘ ‘ I <

metric computations is enough to find the MAP estimate with

high probability — increasing the complexity of the first sda
stage toN 4P = 90 yields hardly any gain.

P> NMAP NGH — o0

o NMAP < 30, N{H <8

W NMAP < 30, NG < 32

o O NMAP <90, NG < 64
O X NMAP <30, NGH <64
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Fig. 5. Performance of sphere detection based Smart Candiddieg (4 x 4
MIMO, 64-QAM). Dashed curves: ZF-SQRD, solid curves: MMSBRD.

The minimum complexity setup witiV/4F = 30 and
N{H = 8 still achieves a performance within 1dB of the
MaxLogAPP detector. Note that witt{ = 2N; = 8,
the searches for the counter-hypotheses will only find the
constrained SIC solution (or the specific Babai point, hence
the term SCA-Babai used in [4]). The distinct advantage of
this configuration is that imposing constraints on the valLa
certain bit in layemn only affects decisions in layers which are
detected later in layers < m. Some of the calculated branch
metrics may thus be re-used for several of the second stage
searches. This is illustrated by the results in Figure énfdiad
markers): the complexity of the SCA-SE-SD witfi{;" = 8
is only around 150 branch metric computations, compared to
around 200 which one would expect (the configuration with
N§H = 32 requires around 800 branch metric computations).

13 13.5 14r
Ey/Ny [dB] required for BER= 10~°

Fig. 6. Performance-complexity trade-off for conventionatl e&SCA based
tree search detectiod & 4 MIMO, 64-QAM, MMSE-SQRD preprocessing).

Reducing the complexity of the search for counter-
hypotheses is thus crucial to achieving a good performance-
complexity trade-off. In this respect, using the M-Algarit
offers several advantages over the sphere detection based
approach. Firstly, it enables to further increase the eefastor
between the first and the second tree search stage (we use
the notationM; = a,My; = b for the two employed list
sizes in the following). In order to reduce error propagatio
effects, the search for the MAP estimate has to be performed
with a medium value ofM (say, M; = 4). In contrast to
the sphere detector case, a number of counter-hypotheBes wi
hence already be available and the second stage searcles hav
only to be performed for a subset of the bits. It might be
argued that the SCA-SE-SD approach may also use a value of
M > 1 in the first search stage. However, we have seen that
the sphere detector is unattractive for generating listsnill
size. Furthermore, due to the layer-by-layer operationhef t
M-Algorithm, the above stated reuse strategy is also agipléec
in the second search stage, in contrast to the sphere detecto



which descends and ascends the tree structure as necesgarkigher value did not improve performance significantly).
Finally, the detection complexity is fixed, which might bd~or the case of iterative detection-decoding, the treeckear
advantageous for real-time implementation. complexity is in general higher than for the non-iteratiese,
The achieved complexity-performance trade-off is illusdue to the fact that efficient node enumeration strategiesata
trated in Figure 6 i/ = 1 except where indicated). It canbe used (cf. the M-Algorithm results with/ = 2 in Figure 3
clearly be seen that the M-Algorithm based SCA approaeind Figure 8; the increase is roughl§Q/2 = 4).
(SCA-M) generally requires much less complexity to achieve For M-Algorithm based Smart Candidate Adding, however,
performance comparable to the SCA-SE-SD approach (a fadtuis inefficiency can be exploited to the scheme’s advantage
3-4 reduction in complexity is possible). However, it isalsThe initial search for the MAP estimate generates child sode
apparent that the required effort is not substantially lothan with all possible/Q bit combinations at each layer (note
that of conventional tree search schemes (cf. e.g. the sethat a real-valued system model is employed). Since for the
with M; = 8, M> = 1 compared to the M-Algorithm with considered case of an M-Algorithm, constraints on the vafue
M = 16). The main advantages of the SCA approach aeecertain bit do not propagate towards the tree root, thenseco
hence the lower storage space requirements due to the smaltage searches can be directly started from those “deai-end
list sizes, plus the high potential for parallelization @iet of the initial search for the MAP estimate.
second stage tree searches. Figure 8 shows performance-complexity results for the case
of 64-QAM transmission. Results for conventional tree clear
schemes are plotted as reference. For the LISS, the fixed
Consider now the case of an iterative MIMO receiver. Fowomplexity configuration from [10] was employed: the tree
detector-decoder iterations are performed. Figure 7tilitss search was run until the number of paths reached the stack
the sensitivity of conventional tree search schemes to tsige. Furthermore, the noise bias term proposed in [16] was
choice of the LLR clipping level. The loss resulting fromused. The general trends are comparable to the non-ierativ
choosing the clipping level too highL{;;, = 3/3.5/5 for case: the average complexity of all conventional tree searc
M = 2/4/64, respectively) is roughly 0.5dB for smaller listschemes is within a factor of two of each other, if compa-
sizes, thus potentially setting off a large part of the gaimble performance is to be achieved. The SCA-M approach
obtained by increasing the list sfz&he clipping levels which allows to achieve performance very close to MaxLogAPP
maximized performance were found to ey, = 2/2/4 for detection already when usind/; = 4 and M, = 1. The

VI. I TERATIVE DETECTION-DECODING

M = 2/4/64, respectively. complexity is roughly the same as that of an M-Algorithm or
a LISS achieving similar performance. Note that the setting
10° ; { e oot with M; = 16 and M, = 1 allows to achieve the same
‘ ' ‘ *Letip > Ly performance as a conventional M-Algorithm with = 64, but
— Laip ~ LY, requires only half the number of branch metric computations
100 > = 1024 The complexity of the search for counter-hypotheses i$ stil
substantial, such that the application of the SCA approach i
Mo mainly attractive if close-to-optimal performance is ttey.
107 - |
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Fig. 7. Impact of LLR clipping level on the performance of M-Alithm ; ! ; M= 4i ;
based detectiord(x 4 MIMO, 64-QAM, MMSE-SQRD preprocessing). / M9
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The performance of SCA is largely invariant to the choice ‘ ‘ ‘ ‘ / 2
- o}
of the clipping level (results not shown). It must of courge b
set high enough to avoid a decrease in mutual information. A 10;0 1 > 3 4
value ofL.;;;, = 5 was found to yield satisfactory performance Ey, /N, [dB] required for BER= 10~°

INote that a constant clipping level of 8 has been used in EL]awconstant Fig. 8.  Performance-complexity trade-off for conventionatl&SCA based
level of 3 in [3]. Both solutions are clearly suboptimal. tree search detectior & 4 MIMO, 64-QAM, MMSE-SQRD preprocessing).



Results for the case of 4-QAM transmission are providgzbtential for parallelization. Regarding the relative itsenf
in Figure 9 for the sake of completeness. Note that the givére “list” versions of the sphere detector, the LISS, and the
complexity figures for the conventional tree search schemisAlgorithm, it was shown that the average complexity of all
will be comparable also for the non-iterative case, as athemes is typically within a factor of two of each other (for
schemes enumerate (at least) two child nodes per parent, eve2 considered x 4 MIMO setup; appropriate upper bounds
when using Schnorr-Euchner enumeration. Again, the aeeragn the tree search complexity have to be imposed for the LISS
complexity of all investigated schemes is in the same ordend the sphere detector). Due to the lower storage requitsme
of magnitude. The LISS with fixed complexity and noise biaand sorting effort, the M-Algorithm and the sphere detector
term is a very attractive solution, if only the required nwenb appear to be the most attractive techniques for a real-time
of branch metric computations is considered. Smart Candiaplementation.
date Adding based on the M-Algorithm essentially achieves
MaxLogAPP performance already when using = 2 and

M, = 1. The complexity is roughly 50% lower than that of [1] B. HOChW?;:d anc:"giztEenT Brink, “_Achieving near-capaqityﬂlmgllﬁple-
: : antenna channe ransactions on Communicationsol. » Pp.
the LISS which achieves the same performance. Observe that 389-399, Mar. 2003.

the complexity reduction compared to a MaxLogAPP detectgp] s. Baero, J. Hagenauer, and M. Witzke, “Iterative détecof MIMO

is “only” on the order of factor 5. In light of the additional transmission using a list-sequential (LISS) detector,Pinceedings of
overheads involved in the pre_sented tree_search schemes, atlhleH%EEAAE;%B?)%OTF:CZ%rggieggg;m communications (5 vol. &
brute force approach might still be attractive for a praatic [3] S. Haykin, M. Sellathurai, Y. de Jong, and T. Willink, “flao-MIMO
implementation, see [17]. for wireless communicationslEEE Communications Magazineol. 42,
pp. 48— 53, Oct. 2004.
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