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The human-computer dialogue field is nowadays a rather developed technology and research branch 
in its own right, but consensus had not been reached yet with respect to several issues. Out of these, 
several aspects related to answer generation in spoken natural language are addressed in this paper. 
First, a modular architecture integrated into a distributed, agent-based dialogue framework and in 
compliance with existing standard architectures for natural language generation is specified. Its 
strengths and weaknesses regarding existing approaches and in the context of human-computer 
spoken dialogue are emphasized. Second, the interfaces between modules in the architecture are 
presented in detail; information representation issues, involving XML grammars, are pointed out. 
Then, there are provided several examples of knowledge representation, in XML format, for the 
information exchanged between the modules in the architecture. Finally, comparisons with similar 
work and a set of conclusions are provided.  
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1. INTRODUCTION 

 Since 2005 our team has started doing research in natural language generation in the framework of 
spoken human-computer dialogue systems. It is well known that Natural Language Generation is a research 
field in its own right, but the actual context of spoken dialogue puts forward several specific issues, such as 
(i) the particularities of the speakers involved in dialogue (in terms of at least social relationship and level of 
expertise with respect to the topic of the dialogue), (ii) the dynamic evolution of the users’ characteristics 
during dialogue, (iii) the fragmented character of the utterances in dialogue (an utterance from one user can 
be interrupted by an utterance from the other user taking part in dialogue), (iv) the fact that the language used 
in dialogue is spoken, hence non-grammatical in the sense that it features ellipses and several other speech-
specific characteristics. 
 The goal of our research resides in the design and development of a generic natural language 
generation module in a spoken dialogue system; this generation module ought to be as generic as possible, in 
the sense that: 

– domain-specific knowledge should not be involved in language generation, 
– language-specific knowledge should not be explicitly encoded in the language generator. 

 Moreover, the output provided by the language generator should be as expressive as possible, in the 
sense that, on the one hand, the generated utterances should appear natural and “human-like” to human 
partners in dialogue and, on the other hand, the output of the generator should allow a speech synthesis 
module to extract prosodic information conveying emotional states. 
 In order to achieve a high degree of expressive power and of pertinence related to the context of the 
dialogue – i.e., the relationship between speakers, their level of familiarity with respect to the topic of the 
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dialogue and the history of the dialogue) for the utterances being generated, resulting in a coherent dialogue, 
insights from linguistic pragmatics are used, namely, ideas from Speech Act Theory (initially stated by J. L. 
Austin [1], then augmented by J. R. Searle [2] and formalized in a general semantics framework by 
Vanderveken [3]) and from discourse representation formalisms – Segmented Discourse Representation 
Theory (formally stated by N. Asher and A. Lascarides [4], continuing previous work of H. Kamp in 
Discourse Representation Theory and of Mann and Thompson in Rhetorical Structure Theory). Thus, the 
first main insight provided by the Speech Act Theory is that the language can also be used to perform 
actions, not only to state things; hence one distinguishes, in performing an utterance, three types of speech 
acts: locutionary act (corresponding to the actual linguistic statement in the utterance), illocutionary act 
(enclosing the pragmatic – i.e., non-linguistic aim of the utterance) and perlocutionary act (specifying the 
effects of the utterance on its recipient – i.e., the dialogue partner). 
 In applying previous work in Speech Act Theory (basically, covering only monologues) to dialogue, 
inter-subjectivity aspects ought to be considered, namely particular features put forward by the two partners 
in dialogue, through a certain human language and within a certain world (here, shared background 
knowledge, beliefs, etc.). This framework stems to two poles in dialogue: 

– purely linguistic and deictic aspects – represented by language and world – that Searle put forward 
via the notion of direction of adjustment between words and things; 
– inter-subjective aspects – represented by the two speakers as partners in dialogue – that must be 
considered in dialogue, where speakers adjust their inter-social game. 

 Given the elements stated above, this paper will present the architecture of the natural language 
generator for human-computer dialogue. This architecture is compared to standard architectures in language 
generation, emphasizing the knowledge representation issues and design choices for the information 
exchanged between modules in the architecture. Considerable attention is paid to the representation format 
for the information exchanged between the modules in our architecture; XML grammars are defined and 
supported by worked examples. Finally, related work in the field of the architectures for natural language 
generation is presented, and a set of conclusions and pointers to further work end up the paper. 

2. OVERVIEW OF THE ARCHITECTURE 

2.1. Processing Levels 

 One considers that the generation of linguistic utterances in spoken dialogue takes place at five 
levels that can “produce” one particular aspect of the utterance being output: (i) the logic level, (ii) the 
pragmatic level, (iii) the linguistic level, (iv) the acoustic level, and (v) the expressive level. Each of these 
(processing) levels is realized by a sub-module, as pointed out below: 

1. the logic level – the logic generator (i.e., the dialogue controller, a module exterior to the natural 
language generator); 

2. the pragmatic level – the pragmatic generator (a sub-module of the natural language generator); 
3. the linguistic level – the linguistic generator (a sub-module of the natural language generator); 
4. the expressive level – the prosodic generator (a sub-module of the natural language generator); 
5. the acoustic level – the speech synthesizer (i.e., a text-to-speech system, exterior to the natural 

language generator). 
 In the following lines one will describe the architecture proposed, comparing it to the standard 
architectures designed by E. Reiter and R. Dale [5]. 
 Thus, the architecture proposed and its parallel to the architecture of Reiter and Dale is presented 
below and synthesized in figure 1: 

1. Logic level – this processing level does not belong to the natural language generation system, but is 
stated here in order to achieve compatibility to standard architectures in language generation: 

  – Modules: Dialogue controller – Artificial Intelligence-based planning module, based on J. 
Caelen’s work [6]; 
– Inputs: Logic formula, augmented with pragmatic markers (speech acts), corresponding to 
one user utterance; 

  – Outputs: Logic formula, corresponding to the utterance to be generated by the system; 
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Figure 1. Processing levels, modules and knowledge in the generation system. 

2. Pragmatic level – this processing level is the first to belong to the natural language generation 
module and is concerned (in part) in this paper: 

  – Modules: – Pragmatic generator – uses discourse representation theories (Segmented Dis 
course Representation Theory – SDRT [4]) and Speech Acts Theory; 

  – Inputs: Logic formula coming from the dialogue controller, corresponding to the utterance 
to be generated; Logic formula coming from the dialogue controller, corresponding to the 
utterance previously produced by the user; 

  – Outputs: Discourse representation integrating previous dialogue history, for the utterance 
to be generated; 

3. Linguistic level – this processing level uses searching and matching procedures in a corpus-based 
approach and is not described in this paper: 
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  – Modules: Linguistic generator – performs searching and matching in a corpus of annotated 
spoken dialogues; 

  – Inputs:  Logic Formula coming from the dialogue controller, via the pragmatic generator; 
Partial discourse structure coming from the pragmatic generator; 

  – Outputs: Text, corresponding to the utterance to be generated as the response of the 
dialogue system; 

4. Expressive level – this level is concerned with the addition of expressiveness to the text previously 
generated; the expressiveness is considered only with respect to the quality of the speech signal 
that can be synthesized from the text but, nevertheless, all the processing steps are kept at a 
textual level: 

  – Modules: Prosodic generator – this module is responsible with prosodic markup for the 
text coming from the linguistic level; 

  – Inputs: – Discourse structure coming from the pragmatic level; 
     – Text coming from the linguistic level; 
     – Degree of illocutionary force for the text; 
  – Outputs: Prosodic markup, in XML notation; 

5. Acoustic level – This level performs the actual speech synthesis, in a text-to-speech framework, 
augmented with features being capable to process prosodic markup coming from the expressive 
level: 

  – Modules: Speech synthesizer – this module ought to be able to handle prosodic markup 
accompanying the text to be synthesized; 

  – Inputs: Text, augmented with XML markup, stating the variation of prosodic parameters 
along the utterance to be synthesized; 

  – Outputs: Synthesized speech. 

2.2. Comparison to Standard Architectures in Natural Language Generation 

 The natural language generation architecture presented in the previous section is here compared to 
two of the most representative standard architectures in natural language generation.  These reference models 
are the architecture of Reiter and Dale [5] and a more practically-oriented one, RAGS (Reference 
Architecture for Generation Systems) architecture [7]. 
 Hence, as one can see in figure 1, the logic and pragmatic levels in our architecture map to the 
content planning module in the architecture of Reiter and Dale, since here the what-to-say aspect in 
generation is handled: the logic level specifies the communicative goal, the speech act to be communicated 
and the semantic content of the latter, while the pragmatic level reinforces the coherence between the 
message to be generated and the history of the dialogue, providing at the same time the rhetorical structure 
for the utterance to be generated, still taking into account the history of the dialogue. 
 Thereafter, one observes a somewhat “reversed” phenomenon: the linguistic level in our architecture 
maps, at the same time, to the microplanning and surface realization modules in the architecture of Reiter 
and Dale, since the linguistic level must handle the generation of the actual textual, linguistic construct for 
the utterance, out of the non-linguistic input information. 
 The rest of the levels (and modules) do not map to levels in the architecture of Reiter and Dale, 
which, in fact, allows for speech generation, mostly via an adaptation of the surface realization module so as 
to be able to produce speech, in a concept-to-speech framework, hence loosing the flexibility given by the 
text itself (this flexibility could be important if one wanted to use parts of the generation module in several 
different applications). 
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Figure 2. Mappings with the RAGS architecture. 

 Nevertheless, the most important difference between our architecture and that of Reiter and Dale 
resides in the non-linear processing flow of the former: whereas the architecture of Reiter and Dale supposes 
an unidirectional processing flow in which one module takes input from and provides output to one and only 
one module, our architecture allows for the expressive level to be incident to both pragmatic and linguistic 
levels; moreover, the pragmatic and expressive levels can communicate by bypassing the linguistic level. 
This type of interaction between modules is not specified in the architecture of Reiter and Dale. 
 The architecture of Reiter and Dale remains a baseline theoretical framework for natural language 
generation systems design, but for practical insights that should guide the development of generator in a 
coherent manner, another architecture seems more appropriate, namely, the RAGS architecture. The latter 
architecture seems more adapted to practical implementations (since it specifies data representation formats 
and means to exchange them between several processing levels). Nonetheless, the RAGS architecture still 
specifies a pipelined architecture, allowing though shortcuts between representation levels, via non-local 
arrows, as pointed out in [7]. Hence the double incidence of the expressive level to other processing levels is 
compatible, in principle, at a practical level, with the RAGS architecture. 
 The almost one-to-one mappings between RAGS and our architecture are pointed out in figure 2. 
Thus, the logic level in our architecture maps to the conceptual level in RAGS, but only with respect to 
language generation aspects, since otherwise the logic generator in our architecture (that is, the dialogue 
controller) does a lot more than the conceptual level in RAGS [7]. This is why the logic generator in our 
architecture does not belong to the generation system in itself, constituting instead the interface of the latter 
system to the dialogue context. 
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 The pragmatic level in our architecture maps at the same time to the rhetorical and to the document 
levels in RAGS, since the pragmatic generator in our model situates and enforces the coherence of the 
speech turn to be produced in the context of a dialogue, building at the same time a representation of the 
discourse, as a discourse structure as shallow as document specifications in a language such as HTML or 
LaTeX but, of course, without a linguistic realization yet. 
 The linguistic level in our architecture maps to two levels in RAGS too: the semantic and syntactic 
levels, since in our approach these two processing levels are conflated in a corpus-based semantically and 
pragmatically-driven approach. 
 As for the expressive and acoustic levels in our architecture, there is no mapping between these 
levels and any one level in RAGS, since the aspects related to prosody generation and speech synthesis are 
not concerned by RAGS, which addresses only the issue of obtaining natural language text as a final result of 
the generation process. 
 Therefore, although our architecture has several common points with existing reference architectures 
in natural language generation, either mostly theoretical as that of Reiter and Dale, or more practical and 
software-oriented as the RAGS model, remains different in several fine details. 

3. INTERFACES BETWEEN MODULES 

3.1. Interface between logic and pragmatic levels 

 The interface between the logic and the pragmatic levels can be viewed under two angles: (i) the 
static knowledge used by the pragmatic level in situating the information come from the logic level, and (ii) 
the dynamic information provided by the logic level at each speech turn to be produced by the machine. 
Thus, the logic level provides dynamic information to the pragmatic level, while the latter uses static 
knowledge dependent on the current dialogue but not on the current speech turn in dialogue. Hence, there are 
two types of inputs to the pragmatic generator: 

1. Static input – represented by prior knowledge in the system; it comprises: 
• social relations between the user and the institution possessing the dialogue system – for 

instance, client, director, colleague, etc.; 
• level of expertise of the user with respect to the topic of the dialogue; 

2. Dynamic input – represented by the information come from the logic level during dialogue and 
comprises logic formulae augmented with speech act and dialogue strategy specifications [6], 
[19]; hence, this is posterior information for the pragmatic generator, varying along the dialogue. 

An important issue in systems architecture design is the specification of the representation format of 
the information exchanged between modules. The pragmatic level in our architecture ought to rely on a 
consistent and homogeneous representation for the knowledge involved (as inputs); hence, the interface 
should constitute a coherent knowledge set. 

As a practical choice for knowledge representation one uses XML mark-up, following a set of 
Document Type Definitions (DTD) specifying grammars authorizing the expression of the information 
exchanged between the modules in our architecture. 

Given all the elements above, in specifying the interface between the logic and the pragmatic level 
the following design choices have been made: 

• For the static input to the pragmatic generator the following elements are specified in the 
corresponding DTD: 

o the user “model”, stating the social relationship to the dialogue partner and its level of 
expertise with respect to the topic of the dialogue; 

• For the dynamic input to the pragmatic generator, the following elements are specified in the 
corresponding DTD: 

o the speech act for the utterance to be generated; 
o the communicative intention (i.e., a logic formula); 
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o the dialogue strategy being chosen by the logic generator (a. k. a. the dialogue 
controller) in order to communicate a certain intention. 

3.2. Interface between pragmatic and linguistic levels 

 The pragmatic generation level computes a discourse structure for each dialogue being undergone. 
However, only the speech act currently due to be put in linguistic form has to be specified to the linguistic 
generation level. The speech act to “generate” (i.e., to put in textual form) has to be in a context known to the 
linguistic generator, since the latter operates in a corpus-based manner, performing search and matching on 
such (discourse) contexts, but its operation is not described in this paper. In order to provide the necessary 
information to the linguistic generation level, the pragmatic level provides a SDRS discourse structure 
containing rhetorical relations between utterances, represented in turn as labels accompanied by logic 
formulae. Thus, the complete output provided by the pragmatic level as input to the linguistic level is also 
represented in XML format, following a specific DTD that will be presented below. 
 The design of the XML grammar for expressing is guided by the fact that the information needed by 
the linguistic generation level is the following: 

1. At the level of one utterance: 
• the speaker having produced the utterance (the human user), or due to produce it (the 

machine); 
• the dialogue strategy used to produce the current utterance; 
• the speech act realized by the current utterance; 
• the degree of strength for the illocutionary force characterizing the current utterance; 
2. At the level of sets of utterances: 
• utterance labels, one label for each utterance; 
• rhetorical relations between pairs of utterances, within the framework of the SDRT (the set 

of rhetorical relations used will not be detailed in this paper); 
3. At extra-discourse level, the user model, come from the static input to the pragmatic 

generator: 
• the level of expertise of the user with respect to the topic of the dialogue; 
• the social relationship between the user and the institution owning the dialogue system. 

3.3. Interface between pragmatic, linguistic and expressive levels 

 The inputs to the expressive level are made of information provided by the pragmatic generation 
level to the linguistic level, accompanied by the text provided by the linguistic level as its output. Therefore, 
the principles and the XML specifications presented in the preceding two sub-sections apply also for 
representing the information exchanged between the pragmatic and linguistic levels, and the expressive level. 

3.4. Interface between expressive and acoustic levels 

 As stated in section 2, in our architecture the acoustic generation level is a speech synthesizer able to 
accept and process prosodic markup provided, in textual form, by the expressive level. Hence, the inputs to 
the acoustic level are, on the one hand, the text come from the linguistic level and, on the other hand, 
prosodic markup come from the expressive level.  

Assuming that the prosodic markup provided by the expressive level concerns only the contour of the 
fundamental frequency curve, this latter one, denoted by 0Ψ , is expressed in terms of a set of seven elementary 
contours, denoted by “++”, “+”, “+=”, “=”, “-+”, “-”, “--”. Thus, denoting by “↑ ” the concatenation operation, 
the contour of the fundamental frequency for a particular speech signal is expressed as: 



64 Vladimir POPESCU, Jean CAELEN, Corneliu BURILEANU  

 
( ) ( ) ( ){ }00

10 ;;;;;;% ii
N
i vx ×−−−=−==++++×=↑Ψ =  (1)

 

where ( )0
iv is a vector of module 1 in the real orthogonal base of seventh order, and ( )0

ix  are positive real 
numbers such that: 
 

( ) 100
1

0 =∑ =

N

i ix  (2)
 

and N is a user-defined parameter determined in an empiric manner; this number specifies the number of 
points in which the fundamental frequency contour is expressed. Its value is chosen during experiments, 
according to the application, the speech corpora being used and the results expected. 
 As for the meaning of the elementary contours, this is specified as follows: (i) “++” denotes a signal 
of slope 2 and unit duration, (ii) “+” denotes a signal of slope 1 and unit duration, (iii) “+=” denotes a signal 
of slope 0.5 and unit duration, (iv) “=” denotes a signal of slope 0 and unit duration, (v) “-=” denotes a signal 
of slope -0.5 and unit duration, (vi) “-” denotes a signal of slope -1 and unit duration, (vii) “--” denotes a 
signal of slope -2 and unit duration. The hypothesis behind this representation scheme is that the fundamental 
frequency has a sufficiently smooth variation to be represented via these seven elementary contours, 
weighted by percents of the total acoustic signal length; these percents give the duration for each elementary 
contour. 
 This manner of representing fundamental frequency contours are inspired from and related to 
formalisms such as the one designed by J. Pierrehumbert, or ToBI [8], [10]. Nevertheless, these 
representation conventions need to be specified in an XML format in order to constitute an interface between 
expressive and acoustic generation levels. 

The fundamental frequency contour is mapped to an utterance for which the text is given by the 
linguistic generation level; in order to perform this mapping in a transparent manner, an XML grammar has 
been defined. 

3.5. Examples 

In this section we will present an extensive example of information representation using the interfaces 
previously defined. Thus, we will assume that a fragment of transcribed spoken dialogue is available, and 
that a certain utterance (the last one) is due to be produced by the machine. Hence, the discourse structure, in 
the framework of the SDRT, will be represented, as well as the logic formula for the utterance to be 
generated, accompanied by the dialogue strategy and the speech act for this latter utterance. 
 

 
Figure 3. Discourse structure for a dialogue. 

Therefore, we assume that the following fragment of dialogue is available (by “U” and “M” we denote 
the human user and the machine, respectively), and 1π , … 5π are the labels of the utterances in the dialogue 
shown below: 
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M: 1π : And you want whose book on “X”? 
U: 2π : Well, what’s available? 
M: 3π : We have authors “Y” and “Z”. 
M: 4π : We had also authors “T” and “W” yesterday… 
U: 5π : So, I would choose author “Z”! 

 

The discourse structure, in the SDRT formalism, is shown in figure 3, will be represented in XML 
format, in order to be passed from the pragmatic generation level to the linguistic level in our architecture. 
Moreover, we suppose that the machine (M) is due to generate an answer of confirmation to the last 
statement coming from the user (U), which will correspond to an utterance labeled 6π .  

Hence, the logic generation level will produce a communicative intent expressing the confirmation of 
the fact that the user can indeed choose (for buying in the case of a book store, or borrowing in the case of a 
library) the book of author “Z”; a logic formula, in first-order predicate logic, would be as expressed below: 

)1,equals( ),equals(),,choose()"",equals(),author()book( okUuserokXuserZyyXX ∧∧∧∧∧∃  (3)

where book is a unary predicate, author and equals are binary predicates, and choose is a ternary 
predicate. 

The pragmatic generation level takes as input the discourse structure as shown in figure 3, the logic 
formula as shown in equation (3), assigns the label 6π  to it and adds it to the discourse structure in figure 3, 
linking 6π  to 5π  via the rhetorical relation ACK( 5π , 6π ). In order to do that, it uses the information on the 
user profiles, namely U (client, expert), and M (institution, expert), the strategy used in communicating 6π , 
namely cooperative-expert case (K1), and the speech act used in conveying 6π  to the user, namely FS (DO-
KNOW). Hence, the input to the pragmatic generator can be expressed, in XML, for the utterance to be 
generated ( 6π ), as shown in appendix 2. 

The linguistic generation level takes as input the discourse structure updated by the pragmatic level, as 
stated above, along with the logic formulae for the utterances in the discourse structure and outputs a textual 
representation for 6π , such as: 

M: 6π : OK, you can take the book by the author “Z”! 
Hence, the input to the linguistic generator contains, besides the previous statement for the 

communicative intents “behind” the utterances in the discourse structure, the XML representation for the 
discourse structure updated from that in figure 3, so that in integrates the utterance 6π as specified in 
appendix 2. 

The expressive generation level takes the text produced by the linguistic level, along with the discourse 
structure provided by the pragmatic level and outputs prosodic markup associated to the text, expressed in 
XML format as shown in appendix 2. 

This prosodic markup is taken by the acoustic generation level as input; the acoustic level outputs in its 
turn the speech signal for the utterance 6π . 

4. RELATED WORK 

 The idea of designing an architecture for natural language generation has already been mitigated in 
several instances, out of which the most interesting seem to be the standard architecture proposed by Reiter 
and Dale and the RAGS architecture. Nevertheless, none of these models was targeted towards integration in 
spoken human-computer dialogue systems, researchers having approached the problem of natural language 
generation for dialogue in several fashions, varying from purely rule-based approaches [16], passing through 
grammar-based approaches [17], ad-hoc combined approaches [15], or purely probabilistic, principled, 
approaches [13], [14]. 
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As a general remark concerning these approaches, they usually lack generality with respect to 
application domain or language being used; that is precisely what our architecture tries to mitigate. 

5. CONCLUSIONS AND FURTHER WORK 

Our paper has described a generic (independent of the application domain and language used) 
architecture for spoken language generation in human-computer dialogue, where the language generation 
process is viewed as a chain of several stages or generation levels, namely, (i) the logic level, (ii) the 
pragmatic level, (iii) the linguistic level, (iv) the expressive level, and (v) the acoustic level. Each of these 
levels is characterized by three features: 

• a set of inputs, specified in a consistent manner, following suited XML grammars; 
• a module instantiating the processing of the inputs, in order to obtain results to be output; 
• a set of outputs, specified in a consistent manner as well. 
While the set of modules is compatible, in principle, with the standard architectures of Reiter and Dale 

and with the RAGS reference model, the inputs and outputs to and of these modules are defined in a precise 
manner, which is, though, dependent on the underlying theoretical assumptions driving the inner working of 
these modules. However, the way that the interfaces are defined is not related to the way in which this 
information is actually processed within the modules, a certain degree of separation between the modules 
(via the interfaces between them) thus being achieved. 

The way in which our architecture is defined allows for a rather straightforward software design, in an 
object-oriented manner, using for instance UML or other similar modelling languages1. 

 A further step in refining the architecture presented in this paper would be to render it compatible 
with the RAGS model, by aligning the XML interface specifications provided in our architecture to those 
provided in RAGS. More specifically, we need to attentively customize the (rather) free notation provided in 
RAGS to ours, which relies on specific theoretical assumptions driving the processing steps accomplished at 
each generation level. 

 The compliance of our architecture to the RAGS specification would open the way to consistent 
evaluations of our architecture with respect to other natural language generation architectures already 
complying with the RAGS model (for example, the IDAS system [10]), which is very important for 
performance comparisons driving decisions on which architectures to adopt when building a particular 
natural language generation system. 
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APPENDIX 1 – XML SPECIFICATIONS 

The XML grammar specifying the interface between logic and pragmatic levels is given below: 
Elements: 
- USER-TYPE 

this element specifies the type of the user having produced the current utterance; it can be either 
MACHINE or USER. Moreover, the type of the user can even not be specified, in order to take into account 
the situation in which the nature of the user is not (yet) known to the system2; 
- USER | MACHINE 
 each element USER or MACHINE is EMPTY, hence not containing other elements; 
- SPEECH-ACT 
 this element specifies the speech act and can be either EMPTY or represented by an element of the 
type predicate; 
- PREDICATE 
 this element can either be explicitly given (#PCDATA), or be obtained via a reference to a logic 
formula, specified in XML Common Logic (XCL) language (%LOGIC-FORMULA). Moreover, this element 
can be EMPTY, thus taking into account the absence of the speech act to communicate; 
- STRATEGY 

this element specifies the strategy chosen at the logic level by the dialogue controller in order to 
communicate a certain speech act. This element does not contain other sub-elements, having instead several 
attributes that one will see further; 
- GOAL 
 this element specifies the goal put by the dialogue controller when communicating the speech act; 
this goal has to be a part of the output provided by the logic level to the pragmatic level, so that the latter can 
used this goal in the computation of the illocutionary force, for instance. This goal can be either explicitly 
stated (#PCDATA), or referenced to a predicate (%LOGIC-FORMULA); it can even be EMPTY, thus marking 
the absence of the goal. 
Attributes: 
- MACHINE | USER::relation 
 this attribute specifies the relationship to the dialogue partner; the value for this attribute must be 
stated (#REQUIRED); the default value is equal; 
- MACHINE | USER::level 
 this attribute specifies the level of expertise for the emitter of the current speech act; the value for 
this attribute must be specified, the default being expert; 
- MACHINE | USER::identifier 
 this attribute is used for the internal knowledge management and its value need not be specified, but 
is initialized by the system (#IMPLIED); 
                                                            

2 This way, the specification of the interface between logic and pragmatic levels allows for dialogue between a machine and 
either a human user or another machine. 
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- SPEECH-ACT::source 
 this attribute specifies the emitter of the current speech act; its value must be stated; 
- SPEECH-ACT::destination 
 similar to the preceding attribute, the destination speaker for the current speech act is specified; the 
value for this attribute must be stated; 
- SPEECH-ACT::type 
 this attribute specifies one of the six types of speech acts, as formalized by J. Caelen [6]; its value 
must be stated; 
- STRATEGY::type 
 this attribute specifies one of the six strategies used in conveying communicative intents to speakers, 
in dialogue and can take one value according to the formalization provided by J. Caelen [6]; the value for 
this attribute must be stated; 
- STRATEGY::governor 
 this attribute specifies the speaker having the initiative in the strategy used to convey a certain 
speech act; this attribute must be initialized; 
- STRATEGY::identifier 
 this attribute is implicitly initialized by the system and its value its value need not be provided by the 
user; its purpose is to identify a certain strategy token in the system; 
- GOAL::initiator 
 this attribute specifies the speaker having established the dialogue goal being currently resolved; its 
value must be provided by the user; 
- GOAL::scope 
 this attribute specifies the scope of the goal (i.e., whether the goal is a main goal or a sub-goal) and 
its value need not be provided by the user, since it results from the internal operation of the system; 
- GOAL::state 
 this attribute specifies the state of the goal (in the framework provided by work of J. Caelen [6]), i.e., 
“stated”, “attained”, “satisfied”, “pending”, “repaired”, “abandoned”, and its value must be provided; 
- GOAL::identifier 
 this attribute is implicitly initialized by the system and its value its value need not be provided by the 
user; its purpose is to identify a certain goal token in the system; 
Entities: 
 The DTD specifying the interface between logic and pragmatic levels gains access to the XML 
representation of the logic formulae through a reference to another DTD specifying the logic formulae3; 
hence, the following entity has been defined: 
- LOGIC-FORMULA 
 this entity represents the reference to the DTD specifying the grammar for the logic formulae 
received from the dialogue controller, expressed in first-order predicate logic. 

 
The XML grammar for the interface between pragmatic and linguistic levels is specified in the DTD 

presented below: 
Elements: 
- DIALOG 
 this element specifies an instance of dialogue; 
- SPEAKER 
 this element specifies the speaker having produced or due to produce an utterance; 
- ACT 
 this element specifies a speech act for an utterance already produced or due to be produced; 
- STRATEGY 
                                                            

3 In fact, a slightly modified version of the “XML Common Logic” (XCL) language is used [18]. 
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 this element specifies the dialogue strategy used in realizing an utterance; 
- RRELATION 
 this element specifies a rhetorical relation connecting two utterances in a dialogue; 
- SDRS 

 this element specifies a discourse representation structure for a dialogue or a fragment of a dialogue; 
- STATE 
 this element specifies a building block a discourse representation structure; it can be either an 
utterance or a discourse sub-structure [4]; the terminology is inspired from a customized automata-based 
formalism designed by our team in order to perform stochastic handling of the discourse representation 
structures [19]; this formalism is not described in this paper; 
- UTTERANCE 
 this element specifies a particular utterance in a discourse structure contained in a dialogue; 
- FORMULA 
 this element specifies the logic formula for a particular utterance in a dialogue; 
Attributes: 
- SPEAKER::type 
 this attribute specifies the type of the speaker, taking one of the values user or machine; its value 
must be specified; 
- SPEAKER::name 
 this attribute specifies a conventional name for a particular speaker; its value need not be specified; 
- SPEAKER::level 
 this attribute specifies the level of expertise for a particular speaker, with respect to the topic of the 
current dialogue; its value must be provided; 
- SPEAKER::relation 
 this attribute specifies the social relationship between a particular speaker and its dialogue partner; 
its value must be provided; 
- ACT::type 
 this attribute specifies the type of the speech act realizing a certain utterance; its value must be 
provided, and can be one of the following: F, FF, FS, FFS, FP, FD, following the taxonomy provided by J. 
Caelen [6]; 
- ACT::name 
 this attribute specifies a name for a speech act type; it can be a gloss on the speech act type; its value 
need not be provided; 
- DIALOG::time 
 this attribute specifies the time of the dialogue, in order to allow for chronological sorting of the 
dialogues; its value is a matter of convention (#PCDATA), but must be provided; 
- STRATEGY::type 

this attribute specifies the type of the dialogue strategy used in order to produce an utterance; its 
value must be provided and can be one of the following: D (directive strategy), R (reactive strategy), N 
(negotiation strategy), C (constructive strategy), K1 (cooperative strategy – expert user case), K2 
(cooperative strategy – novice user case); 
- STRATEGY::name 
 this attribute specifies a name for a strategy type; it can be a gloss on the strategy type and its value 
need not be provided; 
- RRELATION::type 
 this attribute specifies the type of the rhetorical relation connecting two utterances; its value must be 
provided and can be one of the following 17: QELAB (“Question Elaboration”), IQAP (“Indirect Question-
Answer Pair”), PCORR (“Plan Correction”), PELAB (“Plan Elaboration”), BACKGQ (“Backgroundq”), 
ELABQ (“Elaborationq”), NARRQ (“Narrationq”), QAP (“Question-Answer Pair”), ACK 
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(“Acknowledgement”), NEI (“Not Enough Information”), ALT (“Alternation”), BACKGR (“Background”), 
CONSEQ (“Consequence”),  ELAB (“Elaboration”), NARR (“Narration”), CONTR (“Contrast”), and PARALL 
(“Parallel”); 
- RRELATION::name 
 this attribute specifies a name for a rhetorical relation type; it can be a gloss on the rhetorical relation 
type and its value need not be provided; 
- SDRS::label 
 this attribute specifies a label for a discourse representation structure; its value is a matter of 
convention (#PCDATA) and must be provided; 
- SDRS::type 
 this attribute specifies the type of a discourse representation structure; its value must be provided and 
can be either sdrs or enounce; 
- SDRS::nstates 
 this attribute specifies the number of utterances and discourse sub-structures within a discourse 
structure; a labeled discourse sub-structure is a considered a state in a current discourse structure; the value 
of this attribute must be provided; 
- SDRS::nrels 
 this attribute specifies the number of rhetorical relations connecting pairs of utterances and discourse 
sub-structures in a discourse structure; its value must be provided; 
- STATE::type 
 this attribute specifies the type of a state in a current discourse structure; its value must be provided 
and can be either SDRS (for a set of rhetorical relations in a discourse sub-structure) or UTT (for a single 
utterance); 
- STATE::label 
 this attribute specifies the label of a state in a current discourse structure; its value must be provided; 
- UTTERANCE::speaker 
 this attribute specifies the speaker having produced or due to produce the current utterance; its value 
must be provided and must be the name of the speaker (as specified by the attribute SPEAKER::name); 
- UTTERANCE::speech-act 
 this attribute specifies the speech act used to communicate the current utterance; its value must be 
provided; 
- UTTERANCE::strategy 
 this attribute specifies the dialogue strategy used in order to produce the current utterance; its value 
must be provided; 
- UTTERANCE::illoc-force 
 this attribute specifies the degree of strength for the illocutionary force characterizing the current 
utterance; 
Entities: 
- XCL-formula 
 this entity represents a reference to a logic formula expressed in XCL language; 
- SPEAKERS 
 this entity gives the set of speakers as partners in a dialogue; 
- ACTS 
 this entity gives the set of known speech act types; 
- STRATEGIES 
 this entity gives the set of known dialogue strategy types; 
- RRELATIONS 
 this entity gives the set of known rhetorical relations types. 
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 The XML grammar for the interface between expressive and acoustic levels is specified in the DTD 
presented below:  
Elements: 
- UTTERANCE 
 this element specifies the current utterance; it contains the text and the corresponding prosodic 
markup; 
- TEXT 
 this element specifies the raw text (#PCDATA) for the current utterance; 
- CONTOUR 
 this element specifies the fundamental frequency contour as a sequence of weighted elementary 
contours, indexed on a time scale; 
- NNE, NE, ENE, E, ESE, SE, SSE 
 these elements specify respectively the elementary contours “++”,”+”, “+=”, “=”,”-=”, “-”, “--”; 
Attributes: 
- UTTERANCE::length 
 this attribute specifies the length (in seconds) of the acoustic realization for the current utterance; its 
value must be provided; 
- UTTERANCE::id 
 this attribute identifies the utterance in the system; its value need not be provided; 
- CONTOUR::npoints 
 this attribute specifies the number of points in which the fundamental frequency contour is 
expressed; its value must be provided; 
- CONTOUR::id 
 this attribute identifies the fundamental frequency contour for the current utterance; its value need 
not be provided but must be identical to the value of the attribute UTTERANCE::id; 
- {NNE | NE | ENE | E | ESE | SE | SSE}::percent 
 this attribute specifies the vector of percents (weights) for each elementary contour in the current 
utterance; its values must be provided; 
- { NNE | NE | ENE | E | ESE | SE | SSE }::index 
 this attribute specifies the indexes of the points (given by the attribute CONTOUR::npoints) that 
the elementary contour referred occupies (in order) in the current utterance. 

APPENDIX 2 – XML ENCODING EXAMPLE 

 In this appendix XML encoding details are given, for the example presented in subsection 3.5. 
Hence, the information exchanged between logic and pragmatic generation levels is represented as suggested 
below: 

 
<USER-TYPE> 

<MACHINE relation=”server” level=”expert” identifier=”ID7”/> 
</USER-TYPE> 
<SPEECH-ACT source=”machine” destination=”user” type=”FS” identifier=”I9”> 
 <PREDICATE> 
  <quant name=”exists” variable=”X”> 
   <type>book</type> 
   <conn name=”and”> 
    <pred name=”author”> 
     <term name=”X”/><term name=”y”/> 
    </pred> 
    <pred name=”equals”> 

<term name=”y”/><term name=”Z”/> 
</pred> 

    <pred name=”choose”> 
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<term name=”user”/><term name=”X”/> 
</pred> 

    <pred name=”equals”> 
<term name=”user”/><term name=”U”/> 

</pred> 
    <pred name=”equals”> 

<term name=”ok”/><term name=”1”/> 
</pred> 

   </conn> 
  </quant> 
 </PREDICATE> 
</SPEECH-ACT> 
<STRATEGY type=”cooperative-1” governor=”all” identifier=”ID09”/> 
<GOAL initiator=”user” scope=”goal” state=”attained” identifier=”ID09”> 
 <pred name=”choose”> 
  <term name=”book”/> 
 </pred> 
</GOAL> 

 
The information exchanged between pragmatic and linguistic generation levels is shown below, in 

XML encoding: 
 

<SDRS label=”pi0” nstates=”5” nrels=”4”> 
 <STATE label=”pi1” type=”UTT”> 
  <UTTERANCE speaker=”MACHINE” strategy=”K1” speech-act=”FFS”  

    illoc-force=”72”> 
   And you want whose book on “X”? 
  </UTTERANCE> 
  <FORMULA><!-- XCL code --></FORMULA> 
 </STATE> 
 <!-- Other states of the type “UTT” --> 
 <STATE label=”pi3prime” type=”SDRS”> 
  <SDRS label=”pi3prime” nstates=”2” nrels=”1”> 
   <STATE label=”pi3” type=”UTT”> 
    <!-- Definition for the utterance “pi3” --> 
   </STATE> 
   <!-- Definition for state “pi4” --> 
  </SDRS> 
 </STATE> 
 <STATE label=”pi6” type=”UTT”> 
  <UTTERANCE speaker=”MACHINE” strategy=”K1” speech-act=”FS” 

    illoc-force=”31”>NULL</UTTERANCE> 
  <FORMULA> 
   <!-- The formula specified in the input to the pragmatic level --> 
  </FORMULA> 
 </STATE> 
 <RELATION label=”rho1” type=”QELAB” left=”pi1” right=”pi2”/> 
 <RELATION label=”rho2” type=”IQAP” left=”pi2” right=”pi3prime”/> 
 <!-- Other rhetorical relations, as shown on figure 3 --> 
 <RELATION label=”rho5” type=”ACK” left=”pi5” right=”pi6”/> 
</SDRS> 
 

The information exchanged between expressive and acoustic generation levels is pointed out below, in 
XML: 

 
<UTTERANCE length=”4” id=”ID09”> 
 <TEXT>OK, you can take the book by the author “Z”!</TEXT> 
 <CONTOUR npoints=”512” id=”ID09”> 
  <NNE percent=”4.75;5.37;7.33;9.00;0.73” index=”3;5;7;152;365”/> 
  <!-- The other the fundamental contours with their weights and indexes --> 
 </CONTOUR> 
</UTTERANCE> 


