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Abstract—Finite frames are possibly-overcomplete generaliza-
tions of orthonormal bases. We consider the “frame completion”
problem, that is, the problem of how to add vectors to an existing
frame in order to make it better conditioned. In particular,
we discuss a new, complete characterization of the spectra of
the frame operators that arise from those completions whose
newly-added vectors have given prescribed lengths. To do this,
we build on recent work involving a frame’s eigensteps, namely
the interlacing sequence of spectra of its partial frame operators.
We discuss how such eigensteps exist if and only if our prescribed
lengths are majorized by another sequence which is obtained by
comparing our completed frame’s spectrum to our initial one.

I. INTRODUCTION

Let M and N be positive integers, and let {ϕn}Nn=1 be a
finite sequence of vectors in CM . The corresponding synthesis
operator is the M ×N matrix Φ = [ϕ1 · · · ϕN ] obtained by
stacking these vectors as columns. Multiplying this matrix by
its adjoint (conjugate-transpose) Φ∗ yields the N ×N Gram
matrix Φ∗Φ as well as the M ×M frame operator ΦΦ∗:

ΦΦ∗x =

( N∑
n=1

ϕnϕ
∗
n

)
x =

N∑
n=1

〈x, ϕn〉ϕn.

Note that when {ϕn}Nn=1 is an orthonormal basis for CM , we
have M = N and Φ∗Φ = I = ΦΦ∗. In this case, the above
expression gives the traditional orthonormal expansion of x.

Frame theory generalizes the notion of an orthonormal basis
in order to provide possibly-overcomplete (nonorthogonal)
expansions of x. It does this by relaxing Parseval’s identity.
To be precise, {ϕn}Nn=1 is a frame for CM if there exist lower
and upper frame bounds 0 < A ≤ B <∞ such that

A‖x‖2 ≤
N∑

n=1

|〈x, ϕn〉|2 ≤ B‖x‖2, ∀x ∈ CM . (1)

In this finite-dimensional setting, one can show that the opti-
mal frame bounds A and B of any {ϕn}Nn=1 are the least and
greatest eigenvalues of ΦΦ∗, respectively. In particular, when
{ϕn}Nn=1 is a frame for CM , we have that ΦΦ∗ is invertible,
having condition number at most B/A. This enables us to
define the canonical dual frame {ϕ̃n}Nn=1, ϕ̃n := (ΦΦ∗)−1ϕn.
Together, a frame and its dual provide the decompositions:

x =

N∑
n=1

〈x, ϕ̃n〉ϕn =

N∑
n=1

〈x, ϕn〉ϕ̃n, ∀x ∈ CM .

In recent years, these “painless nonorthogonal expansions”
have been exploited in a variety of finite-dimensional signal
processing applications in which redundancy is useful [5].

Much of the recent research on finite frames has focused
on constructing frames that satisfy a given list of desired,
application-motivated constraints. Sometimes these constraints
are nonlinear. For example, we often want our frames to be
tight, namely have A = B in (1), which happens precisely
when ΦΦ∗ = AI. Tightness ensures that Φ is as well-
conditioned as possible, and makes it easy to compute the
canonical dual: ϕ̃n = 1

Aϕn. Moreover, finite tight frames
are easy to construct: we simply need the rows of Φ to be
orthogonal and have constant norm. In short, tight frames
behave much more like orthonormal bases than frames do in
general, while still permitting overcompleteness.

In order to find overcomplete frames which are even more
faithful to the concept of an orthonormal basis, we can further
restrict ourselves to unit norm tight frames (UNTFs), that is,
tight frames {ϕn}Nn=1 for CM that have the additional property
that ‖ϕn‖ = 1 for all n. Whereas the synthesis operator Φ of
an orthonormal basis satisfies ΦΦ∗ = I = Φ∗Φ, a UNTF
instead has that ΦΦ∗ = AI and that the diagonal entries of
Φ∗Φ are 1; the fact that these two matrices have the same
trace implies A is necessarily N

M .
UNTFs are known to exist for every N ≥M . For example,

one may form Φ by extracting M rows from an N × N
discrete Fourier transform matrix. However, the problem of
constructing every UNTF was open for many years, due to
the fact that the entries of Φ must satisfy a large system of
intertwined quadratic equations. This problem was recently
solved in [1] and [3]. In fact, as detailed in the next section, [1]
and [3] give an explicit, closed-form algorithm for constructing
every sequence of vectors {ϕn}Nn=1 ⊆ CM whose frame
operator ΦΦ∗ has a given spectrum {λm}Mm=1 and whose
Gram matrix Φ∗Φ has diagonal entries {µn}Nn=1.

In this paper, we outline recent results from [4] and [7] that
generalize the techniques of [1] and [3] to address the prob-
lem of frame completions. To be precise, given some initial
sequence of vectors {ϕn}Nn=1 ⊆ CM and some desired lengths
{µN+p}Pp=1, we consider the problem of completing {ϕn}Nn=1

by adding P new vectors {ϕN+p}Pp=1 to this collection with
the property that ‖ϕN+p‖2 = µN+p for all p.

We, like several other teams of researchers, are interested
in the best (tightest) possible completions. Several cases of

Proceedings of the 10th International Conference on Sampling Theory and Applications

89



the optimal frame completion problem have already been
solved, such as the case where the lengths permit a tight
completion [2], and the case where all the added vectors have
equal length [6]. To our knowledge, the general case of this
problem (arbitrary lengths, tightness unobtainable) remains
open. Our work here serves to characterize every possible
completion that can be formed using a given sequence of
lengths. Our longer-term goal is to use this characterization
in order to find the optimal completion in the general case.

II. EIGENSTEPS

Let M and N be any positive integers and let {λm}Mm=1 and
{µn}Nn=1 be any nonnegative nonincreasing sequences. Recent
work given in [1] and [3] provides a method for explicitly
constructing every finite sequence of vectors {ϕn}Nn=1 in CM

whose frame operator ΦΦ∗ has spectrum {λm}Mm=1 and whose
vectors have lengths ‖ϕn‖2 = µn for all n. This method is
based on the concept of eigensteps. To be precise, given any
such frame and any k = 0, . . . , N , let {λk;m}Mm=1 denote the
spectrum of its kth partial frame operator

ΦkΦ∗
k =

k∑
n=1

ϕnϕ
∗
n. (2)

In practice, we arrange these values in an M × (N + 1) table: λ0;M λ1;1 · · · λN ;M

...
...

. . .
...

λ0;1 λ1;M · · · λN ;1

 . (3)

In order to arise from a sequence {ϕn}Nn=1 whose frame
operator has spectrum {λm}Mm=1 and whose elements have
lengths ‖ϕn‖2 = µn, the values in this table necessarily satisfy
four rules. First, for k = N , we have ΦNΦ∗

N = ΦΦ∗ and so
λN ;m = λm for all m. This means the last column of (3)
corresponds to our final desired spectrum. Our second rule
comes from the fact that when k = 0, we regard the empty
sum defining Φ0Φ∗

0 to be a matrix of zeros, and so λ0;m = 0
for all m. This means the first column of (3) is all zeros.

The third rule is that for any k, the sum of the entries in
the kth column of (3) is necessarily the sum of the first k of
our µn’s; this follows from the fact that

M∑
m=1

λk;m = Tr(ΦkΦ∗
k) = Tr(Φ∗

kΦk) =

k∑
n=1

µn.

The fourth rule is the least obvious. For any k = 1, . . . , N ,
note that the kth partial frame operator is the sum of the pre-
vious one with an outer product: ΦkΦ∗

k = Φk−1Φ∗
k−1+ϕkϕ

∗
k.

As such, a classical result from matrix analysis tells us that the
spectrum of ΦkΦ∗

k necessarily interlaces on that of Φk−1Φ∗
k−1.

To be precise, we say that a finite sequence of real numbers
{γm}Mm=1 interlaces on another such sequence {βm}Mm=1,
denoted {βm}Mm=1 v {γm}Mm=1, provided

βM ≤ γM ≤ βM−1 ≤ γM−1 ≤ · · · ≤ β2 ≤ γ2 ≤ β1 ≤ γ1.

That is, {βm}Mm=1 v {γm}Mm=1 when γm+1 ≤ βm ≤ γm
for all m = 1, . . . ,M , provided we adopt the convention that

γM+1 := 0. As mentioned above, a classical result from matrix
analysis gives that the spectra of the partial frame operators
necessarily satisfy {λk−1;m}Mm=1 v {λk,m}Mm=1 for all k =
1, . . . , N . This means that each pair of neighboring columns
in (3) necessarily satisfy a zigzag of inequalities, each entry
being no more than its neighbor to its right, which in turn is
no more than its neighbor to its lower left. Gathering these
four rules together, we arrive at the definition of a sequence
of eigensteps:

Definition 1: A sequence {λk;m}Nk=1,
M
m=1 is a sequence

of eigensteps for given nonnegative nonincreasing sequences
{λm}Mm=1 and {µn}Nn=1 if:

(i) λ0;m = 0 for all m = 1, . . . ,M ,
(ii) λN ;m = λm for all m = 1, . . . ,M ,

(iii)
∑M

m=1 λk;m =
∑k

n=1 µn for all k = 1, . . . , N
(iv) {λk−1;m}Mm=1 v {λk;m}Mm=1 for all k = 1, . . . , N .

To summarize, if {ϕn}Nn=1 is any sequence of vectors in CM

whose frame operator has spectrum {λm}Mm=1 and for which
‖ϕn‖ = µn for all n, then the spectra of its partial frame
operators (2) necessarily form a corresponding sequence of
eigensteps.

Remarkably, these relatively-simple necessary conditions
on the existence of such frames are also sufficient. Indeed,
as shown in [1], given a valid sequence of eigensteps, one
can explicitly construct a sequence of vectors {ϕn}Nn=1 with
the desired spectrum and lengths. The approach is iterative:
given {ϕn}kn=1 such that ΦkΦ∗

k has the desired spectrum
{λk;m}Mm=1, such that ‖ϕn‖ = µn for all n = 1, . . . , k, and
such that the eigenvectors of ΦkΦ∗

k are explicitly known, the
algorithm shows how to choose ϕk+1 as a linear combina-
tion of these eigenvectors so that Φk+1Φ∗

k+1 has spectrum
{λk+1;m}Mm=1 and such that ‖ϕk+1‖2 = µk+1; the algorithm
then goes on to explicitly update the eigenvectors of ΦkΦ∗

k into
those of Φk+1Φ∗

k+1, as needed for the next iteration. Apart
from possible rotations and reflections during each step of the
process, the vectors constructed by the algorithm are unique.
As such, eigensteps corresponding to a given {λm}Mm=1 and
{µn}Nn=1 can be viewed as the truly meaningful “parameters”
of all vector sequences whose frame operator has that spectrum
and whose elements have those lengths.

For example, in order to use these ideas to construct a UNTF
of N = 5 elements for M = 3-dimensional space, we want a
3 × 6 table of eigensteps whose last column has the desired
spectrum λ1 = λ2 = λ3 = N

M = 5
3 and whose zeroth column

is zero; we also want the entries in the kth column to sum to
k =

∑k
n=1 µn, and for the values in any column to interlace

on those in the preceding one. An example of such a table is 0 0 0 0 2
3

5
3

0 0 1
3

4
3

5
3

5
3

0 1 5
3

5
3

5
3

5
3

 . (4)

We emphasize that this table does not contain the frame
vectors themselves, but rather the spectra of the partial frame
operators. The process of transforming this table into the actual
frame elements is nontrivial [1]. For example, to define ϕ2,
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we need to find a vector that makes the correct angle with ϕ1

in order for ϕ1ϕ
∗
1 + ϕ2ϕ

∗
2 to have spectrum { 53 ,

1
3 , 0}.

Moreover, we also note that the above table corresponds to
just one way of constructing a 3×5 UNTF. There are infinitely
many others, meaning there are infinitely many UNTFs of five
elements in three-dimensional space, even modulo rotations.
In fact, one can show in this case that every sequence of
eigensteps is of the form 0 0 0 x 2

3
5
3

0 0 y 4
3−x

5
3

5
3

0 1 2−y 5
3

5
3

5
3

 , (5)

where, in order to satisfy the interlacing requirements, we need
to take our parameters (x, y) from the convex set

0 ≤ x ≤ 2
3 , max{x, 13} ≤ y ≤ min{ 43 − x,

2
3 + x}.

This problem of constructing every sequence of eigensteps
for a given {λm}Mm=1 and {µn}Nn=1—thereby in effect con-
structing every sequence of vectors with this spectrum and set
of lengths—is addressed in [3]. Here, it is important to note
that there does not exist a set of eigensteps for every possible
choice of {λm}Mm=1 and {µn}Nn=1. Indeed, at a bare minimum,
the second and third conditions of eigensteps require the λm’s
and the µn’s to have the same sum; this corresponds to our
final frame operator and Gram matrix having the same trace.
Moreover, as evidenced in (4), the first and fourth conditions
of eigensteps require us to have a “triangle of zeros” at the
beginning of our table (3). That is, we necessarily have that
λk;m = 0 for all m > k. When combined with our third and
fourth conditions of eigensteps, this implies that the partial
sums of our µn’s are less than those of our λm’s; for any
k = 1, . . . ,min{M,N}, we necessarily have

k∑
n=1

µn =

M∑
m=1

λk;m =

k∑
m=1

λk;m ≤
k∑

m=1

λm.

Together, these facts state that in order for eigensteps to exist,
our desired spectrum {λm}Mm=1 must necessarily majorize our
desired lengths {µn}Nn=1.

To be precise, we say that a nonnegative nonincreasing se-
quence {λm}Mm=1 majorizes another such sequence {µn}Nn=1,
denoted {µn}Nn=1 � {λm}Mm=1, if

N∑
n=1

µn =

M∑
m=1

λm,

k∑
n=1

µn ≤
k∑

m=1

λm, ∀k = 1, . . . ,min{M,N}.

As we have just discussed, in order for a table of eigensteps
to exist for a given {λm}Mm=1 and {µn}Nn=1—that is, in order
for there to exist a sequence of vectors whose frame operator
has spectrum {λm}Mm=1 and whose elements have lengths
{µn}Nn=1—we necessarily have {µn}Nn=1 � {λm}Mm=1. Re-
markably, the converse of this statement is also true; this
fact has been known for a long time, being a straightforward
application of the classical Schur-Horn Theorem to the Gram

matrix Φ∗Φ. However, the traditional proof of the converse is
nonconstructive. The main contribution of [3] is to give a con-
structive proof of this converse and moreover, generalize the
idea behind that construction so as to explicitly parameterize
the convex polytope of every possible sequence of eigensteps.

To elaborate, the main idea of [3] is a new algorithm, dubbed
Top Kill, for producing a valid sequence of eigensteps from a
given {λm}Mm=1 and {µn}Nn=1. The algorithm is iterative, start-
ing with the final desired spectrum {λN ;m}Mm=1 = {λm}Mm=1

and working backwards from it to produce {λN−1;m}Mm=1,
then {λN−2;m}Mm=1, etc., until finally arriving at {λ1;m}Mm=1.
This algorithm has an intuitive, geometric motivation behind
it (see [3]) that we do not have the space to discuss here.

In brief, however, note that looking at eigenstep tables such
as (4), one quickly realizes that it is harder to get positive
numbers in higher rows than it is in lower ones. This is because
interlacing requires us to first build a suitable “foundation.”
That is, a number in a given column can only be a big as the
one to its lower left, which, in turn, can only be as big as the
one to its lower left, and so on. This can make it difficult to
build the upper levels of our spectrum, especially if we do not
plan ahead.

The Top Kill algorithm handles this issue by (i) working
backwards from right to left, so that you are always explicitly
using the final spectrum {λm}Mm=1 you are trying to build and
(ii) recognizing the higher rows are the most difficult to fill,
and as such, making them the first thing we want to “kill” off.
Indeed, the example table given in (4) is the result of applying
Top Kill for λm = 5

3 for all m and µn = 1 for all n: to build
each column from its neighbor to the right, we remove µn = 1
units of “area,” removing as much as possible from the highest
row before removing from the second highest, and so on. Put
another way, Top Kill’s goal is to take x and y in (5) to be as
small as possible, namely (x, y) = (0, 13 ).

As detailed in [3], it turns out that the Top Kill algorithm
will produce a valid sequence of eigensteps if and only our
λm’s majorize our µn’s. In particular, if, for a given {λm}Mm=1

and {µn}Nn=1, there is any way to produce a sequence of
eigensteps, then Top Kill will produce such a sequence. That
is, if anything works, then Top Kill does. This surprising fact
led us to look for ways of generalizing Top Kill so that it
could be applied to the frame completion problem.

III. FRAME COMPLETIONS

Recall the frame completion problem: given {ϕn}Nn=1 in
CM and a set of desired lengths {µN+p}Pp=1, we want to add
P new measurement vectors to {ϕn}Nn=1 so that the frame
operator of {ϕn}N+P

n=1 has spectrum {λm}Mm=1 and such that
‖ϕN+p‖2 = µN+p for all p = 1, . . . , P . Letting µn := ‖ϕn‖2
for all n, note that in accordance with the theory of eigensteps
in [1], any such frame completion necessarily corresponds to
an M × (N + P + 1) table of eigensteps. Moreover, letting
{αm}Mm=1 denote the spectrum of the frame operator of the
“initial frame” {ϕn}Nn=1, we necessarily have that the values
{αm}Mm=1 lie in the k = N column of this table. We thus see
that each of our desired frame completions corresponds to a
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way of extending an existing M × (N +1) table of eigensteps
by adding P new interlacing columns with the appropriate
column sums.

As detailed in [4] and [7] it turns out that the existence of
such “continued eigensteps” can be characterized in terms of
majorization. However, it is not as simple as requiring that the
final λm’s majorize the µn’s. Indeed, any such characterization
must take into account the initial spectrum {αm}Mm=1. At this
point, we recall the motivation behind the Top Kill algorithm:
when building eigensteps from a spectrum of zeros, we are
faced with an “upper triangle” of zeros that makes it difficult
to get large numbers in the higher rows of our table. However,
this may not be the case when building eigensteps on top of
an initial spectrum {αm}Mm=1. Rather, it turns out that in this
setting, what truly matters is how high the desired spectrum
is relative to the initial spectrum.

A nonobvious concept such as this is best explained in
pictures. In Figure 1(a), we see a given initial spectrum
{α1, α2, α3} = { 74 ,

3
4 ,

1
2}. In (b), this spectrum is overlaid

with a desired completion {λ1, λ2, λ3} = { 134 ,
9
4 , 1}. Suppose

we want to know whether or not our initial frame can be
completed to one with spectrum {λm}3m=1 by adding four new
frame vectors having lengths {µN+1, µN+2, µN+3, µN+4} =
{2, 1, 14 ,

1
4}. To answer this question, we “chop” up the λm’s

according to m and the αm’s; see (c). In (d), we then label the
area in each chopped region according to its height above the
initial spectrum. The total “amount” of {λm}3m=1 that lies one
unit above the existing spectrum is our first “diagonal sum”:

DS1 := ( 13
4 −

7
4 ) + ( 7

4 −
3
4 ) + ( 3

4 −
1
2 ) = 11

4 .

Meanwhile, our second diagonal sum represents the total
amount that lies two units above the existing spectrum:

DS2 := ( 9
4 −

7
4 ) + ( 5

4 − 1) = 3
4 .

Finally, as there is no component of the λm’s that lies three
units above the existing spectrum, we take DS3 = 0.

The main result of our forthcoming paper [4] states that a
given sequence {λm}Mm=1 is realizable as the spectrum of a
completion of a frame with initial spectrum {αm}Mm=1 via the
addition of P new measurements of lengths {µN+p}Pp=1 if and
only if {DSm}Mm=1 majorizes {µN+p}Pp=1. In particular, our
example is constructible since DS1 ≥ µN+1, DS1 + DS2 ≥
µN+1 + µN+2, DS1 + DS2 + DS3 ≥ µN+1 + µN+2 + µN+3,
and DS1+DS2+DS3 = 14

4 = µN+1+µN+2+µN+3+µN+4.
The necessity of this majorization follows from the fact that

for any k ≤ min{M,P}, interlacing forces all of the “area” of
{λN+k;m}Mm=1 to lie at most k units above the initial spectrum
{αm}Mm=1. The part of the λN+k;m’s that lies outside of the
αm’s envelope has a total area of

∑N+k
n=N+1 µn. The amount of

area in these diagonals will only grow as more frame vectors
are added, meaning

N+k∑
n=N+1

µn =

k∑
m=1

DSm;k ≤
k∑

m=1

DSm;P =

k∑
m=1

DSm.

When all P vectors are added, the above inequalities become
equalities.
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Fig. 1. Determining the relative height of a desired completion’s spectrum
above an existing one.

The sufficiency of this majorization condition follows from
a variation of the Top Kill algorithm, called “Chop Kill.” Here,
we can build a valid sequence of eigensteps, provided we once
again start with the desired spectrum and work backwards.
However, rather than removing as much of the “top” of the
spectrum as quickly as possible, we instead remove as much as
possible from the outermost diagonals. This is consistent with
the original motivation behind Top Kill: once we identify the
hardest parts of our spectrum to construct, we work backwards,
taking care of those parts as soon as possible.
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