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Abstract—We describe a procedure that enables us
to construct dual pairs of wavelet frames from certain
dual pairs of Gabor frames. Applying the construction
to Gabor frames generated by appropriate exponential B-
splines gives wavelet frames generated by functions whose
Fourier transforms are compactly supported splines with
geometrically distributed knot sequences. There is also a
reverse transform, which yields pairs of dual Gabor frames
when applied to certain wavelet frames.

I. INTRODUCTION

In this note we will discuss a procedure that allows us
to construct dual pairs of wavelet frames based on certain
dual pairs of Gabor frames, and vice versa. Applying
this to Gabor frames generated by exponential B-splines
produces a class of attractive dual wavelet frame pairs
generated by functions whose Fourier transform are com-
pactly supported splines with geometrically distributed
knots. Our main purpose here is to demonstrate the
usefulness of the method; the proofs of the theoretical
results are given in [2].

Let H be a separable Hilbert space. A sequence
{fi}i∈I in H is called a frame if there exist constants
A,B > 0 such that

A ||f ||2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B ||f ||2, ∀f ∈ H. (I.1)

The constants A and B are frame bounds. The sequence
{fi}i∈I is a Bessel sequence if at least the upper bound
in (I.1) is satisfied. A frame is tight if we can choose
A = B in (I.1). For any frame {fi}i∈I there exists at
least one dual frame, i.e., a frame {f̃i}i∈I for which

f =
∑
i∈I

⟨f, fi⟩f̃i, ∀f ∈ H.

We will consider Gabor frames and wavelet frames in
the Hilbert space L2(R). A Gabor system in L2(R) has
the form {e2πimbxg(x−na)}m,n∈Z for some parameters
a, b > 0 and a given function g ∈ L2(R). Using the
translation operators Taf(x) := f(x − a), a ∈ R, and
the modulation operators Ebf(x) := e2πibxf(x), b ∈ R,
both acting on L2(R), we will denote a Gabor system by
{EmbTnag}m,n∈Z. On the other hand, a wavelet system
in L2(R) has the form {aj/2ψ(ajx−kb)}j,k∈Z for some
parameters a > 1, b > 0 and a given function ψ ∈
L2(R). Introducing the scaling operators (Daf)(x) :=

a1/2f(ax), a > 0, acting on L2(R), the wavelet system
can be written as {DajTkbψ}j,k∈Z.

The duality conditions for a pair of Gabor systems
were obtained by Ron & Shen [9], [10]. We state the
formulation due to Janssen [8]:

Theorem 1.1: Given b, α > 0, two Bessel sequences
{EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z, where g, g̃ ∈
L2(R), form dual Gabor frames for L2(R) if and only
if for all n ∈ Z,∑
j∈Z

g(x+ jα)g̃(x+ jα+ n/b) = bδn,0, a.e. x ∈ R.

There are also characterizing equations for dual
wavelet frames; see [5]. They are formulated in terms
of the Fourier transform, for f ∈ L1(R) defined by
f̂(γ) :=

∫∞
−∞ f(x)e−2πiγxdx, and extended to L2(R)

in the usual way.
Theorem 1.2: Given a > 1, b > 0, two Bessel

sequences {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z, where
ψ, ψ̃ ∈ L2(R), form dual wavelet frames for L2(R) if
and only if the following two conditions hold:
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(i)
∑

j∈Z ψ̂(a
jγ)

̂̃
ψ(ajγ) = b for a.e. γ ∈ R.

(ii) For any number α ̸= 0 of the form α = m/aj ,
m, j ∈ Z,∑
(j,m)∈Iα

ψ̂(ajγ)
̂̃
ψ(ajγ +m/b) = 0, a.e. γ ∈ R,

where Iα := {(j,m) ∈ Z2 | α = m/aj}.
For more information on fundamental results of Gabor

frames and wavelet frames, see, e.g., [1], [7], and [6].

II. FROM GABOR FRAMES TO WAVELET FRAMES

The goal of this section is to show how we can
construct dual wavelet frame pairs based on certain dual
Gabor frame pairs. The key is the following transform
that allows us to move the Gabor structure into the
wavelet structure.

Let θ > 1 be given. Associated with a function
g ∈ L2(R) for which g(logθ | · |) ∈ L2(R), we define a
function ψ ∈ L2(R) by

ψ̂(γ) =

g(logθ(|γ|)), if γ ̸= 0,

0, if γ = 0.
(II.1)

Note that by (II.1), for any a > 0, j ∈ Z and γ ∈ R\{0},

ψ̂(ajγ) = g(j logθ(a) + logθ(|γ|)). (II.2)

Also, if g ∈ L2(R) is a bounded function with support
in the interval [M,N ] for some M,N ∈ R, then

supp ψ̂ ⊆ [−θN ,−θM ] ∪ [θM , θN ].

Note that (II.2) gives a convenient way to obtain
functions ψ with the partition of unity property∑

j∈Z
ψ̂(ajγ) = 1, γ ∈ R. (II.3)

Indeed, just take any function g satisfying the partition
of unity condition∑

j∈Z

g(x+ j) = 1, x ∈ R, (II.4)

and apply the construction in (II.1) with θ := a. Com-
paring the corresponding conditions in Theorem 1.2(i)
and Theorem 1.1, (II.3) provides a possible starting point
for constructing dual wavelet frames, similar to (II.4) for
dual Gabor frames, see, e.g., [3].

If g has compact support and is smooth, then the
function ψ̂ in (II.1) is also smooth. Thus, by taking
smooth functions g we obtain functions ψ with fast decay
in the time domain.

A. Construction of dual pairs of wavelet frames

For fixed parameters b, α > 0 we will consider two
bounded compactly supported functions g, g̃ ∈ L2(R)
and the associated Gabor systems {EmbTnαg}m,n∈Z

and {EmbTnαg̃}m,n∈Z. For a fixed θ > 1, define the
functions ψ, ψ̃ ∈ L2(R) by (II.1) from g, g̃ respectively.

Theorem 2.1: Let b > 0, α > 0, and θ > 1 be given.
Assume that g, g̃ ∈ L2(R) are bounded functions with
support in the interval [M,N ] for some M,N ∈ R and
that {EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z form dual
frames for L2(R). With a := θα, if b ≤ 1

2θN , then
{DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z are dual frames
for L2(R).

The proof follows from (II.2) and the characterizations
of duality for Gabor frames and wavelet frames in
Theorem 1.1 and Theorem 1.2.

If g = g̃ in Theorem 2.1, then ψ = ψ̃, i.e., the result
enables a tight wavelet frame to be constructed from a
tight Gabor frame.

B. Explicit constructions

Based on Theorem 2.1, the rich theory for construction
of dual pairs of Gabor frames enables us to provide
explicit constructions of wavelet frame pairs.

Proposition 2.2: Let g ∈ L2(R) be a bounded real-
valued function with support in the interval [M,N ]

for some M,N ∈ Z. Suppose that g satisfies the
partition of unity condition (II.4). Let a > 1 and
b ∈ (0,min( 1

2(N−M)−1 , 2
−1a−N )] be given, and take

any real sequence {cn}N−M−1
n=−N+M+1 such that

c0 = b, cn + c−n = 2b, n = 1, . . . , N −M − 1.

Then the functions ψ, ψ̃ ∈ L2(R) defined by (II.1) and

̂̃
ψ(γ) =

N−M−1∑
n=−N+M+1

cng(loga(|γ|) + n), γ ̸= 0, (II.5)

generate dual wavelet frames {DajTkbψ}j,k∈Z and
{DajTkbψ̃}j,k∈Z for L2(R).
Proof. It follows from Theorem 3.1 in [3] that
{EmbTng}m,n∈Z and the Gabor system generated by
g̃(x) =

∑N−M−1
n=−N+M+1 cng(x + n) form dual Gabor

frames for L2(R) (the condition b ≤ 1
2(N−M)−1 is

assumed in that result). Now the result follows from
Theorem 2.1 with θ := a. �
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We will now consider a class of exponential B-splines
that yields attractive dual pairs of wavelet frames, for
which the Fourier transform of the generators are com-
pactly supported splines with geometrically distributed
knots and desired smoothness. These exponential splines
are of the form

EN (·) := eβ1(·)χ[0,1](·) ∗ · · · ∗ eβN (·)χ[0,1](·),

where βk = (k − 1)β, k = 1, . . . , N , for some β > 0.

Similar to the classical B-splines given by the choice
βk = 0, k = 1, . . . , N, the exponential B-spline EN is
N−2 times differentiable (for N ≥ 2) and its support is
[0, N ]. An explicit formula for EN is given by Theorem
2.2 in [4] (note that there is a typo in the expression
for EN (x) for x ∈ [k − 1, k] on page 304 of [4]: the
expression eaj1 + · · ·+eajk−1 should be eaj1+···+ajk−1 ).
In Theorem 3.1 in the same paper, it is shown that for
N ≥ 2,∑

k∈Z

EN (x− k) =

∏N−1
m=1

(
eβm − 1

)
βN−1(N − 1)!

. (II.6)

For the partition of unity constraint (II.4) to hold, we
apply (II.6) and consider the function

g(x) :=
βN−1(N − 1)!∏N−1
m=1 (e

βm − 1)
EN (x).

Furthermore, let a := eβ . For γ ̸= 0, using that
eβk log

eβ
(|γ|) = |γ|k, we obtain from (II.1) an expression

that identifies ψ̂ explicitly as a geometric spline, i.e., as
a spline with geometrically distributed knots. Now the
formula (II.5) yields a dual wavelet frame generator ψ̃.
Note that ̂̃

ψ is also a geometric spline.
Example 2.3: Consider the exponential B-spline E3

with N = 3 and β = 1. Then

E3(x) =

1−2ex+e2x

2 , x ∈ [0, 1],

−(e+e2)+2(e−1+e)ex−(e−2+e−1)e2x

2 , x ∈ [1, 2],

e3−2ex+e−3e2x

2 , x ∈ [2, 3],

0, x /∈ [0, 3].

By (II.6) we have∑
k∈Z

E3(x− k) =
1

2
(e− 1)(e2 − 1), x ∈ R,

so we consider g(x) := 2(e− 1)−1(e2 − 1)−1E3(x).

Fig. 1. Plot of the geometric spline ψ̂ in Example 2.3.

Fig. 2. Plot of the geometric spline ̂̃
ψ in Example 2.3.

Let a := eβ = e, and define the function ψ by

ψ̂(γ) =

1−2|γ|+γ2

(e−1)(e2−1) , |γ| ∈ [1, e],

−(e+e2)+2(e−1+e)|γ|−(e−2+e−1)γ2

(e−1)(e2−1) , |γ| ∈ [e, e2],

e3−2|γ|+e−3γ2

(e−1)(e2−1) , |γ| ∈ [e2, e3],

0, |γ| /∈ [1, e3].

The function ψ̂ is a geometric spline with knots at the
points ±1,±e,±e2,±e3.

The construction in Proposition 2.2 works for b ≤
2−1e−3. Taking b = 41−1 and cn = 41−1 for n =

−2, . . . , 2, it follows from (II.2) and (II.5) that the
resulting dual frame generator ψ̃ satisfies

̂̃
ψ(γ) =

1

41

2∑
n=−2

ψ̂(enγ), γ ∈ R.

The function ̂̃
ψ is a geometric spline with knots at the

points ±e−2,±e−1,±1,±e3,±e4,±e5.
Figures 1–3 show the graphs of the functions ψ̂ and̂̃

ψ, where Figure 3 re-plots part of the graph in Figure
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Fig. 3. Plot of the geometric spline ̂̃
ψ in Example 2.3 on the interval

[−1.3, 1.3].

2 on a smaller interval to better depict the behavior of̂̃
ψ around 0. Note that ̂̃

ψ is constant on the support of
ψ̂ and decays to zero outside this set. This is due to
(II.6) and the special structure of ̂̃

ψ in (II.5). In fact,
the same will occur when the construction is applied to
any function whose integer-translates form a partition of
unity. If higher order smoothness in ψ̂ and ̂̃

ψ is desired,
this can be achieved if we use higher order exponential
B-splines in the construction. �

III. FROM WAVELET FRAMES TO GABOR FRAMES

It is possible to reverse the process discussed so far,
and obtain a way to obtain Gabor frames based on certain
wavelet frames. Assume the functions ψ, ψ̃ ∈ L2(R) to
be given. For a parameter θ > 1 we define the functions
g, g̃ by

g(x) := ψ̂(θx), g̃(x) :=
̂̃
ψ(θx), x ∈ R. (III.1)

The conditions below imply that g, g̃ ∈ L2(R).
Theorem 3.1: Let a > 1 and b > 0. Assume that

{DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z are dual frames

for L2(R) and that the functions ψ̂ and ̂̃
ψ are supported

in [−L,−K] ∪ [K,L] for some K,L > 0. Take θ > 1

and α > 0 such that a = θα. If b ≤ 1
logθ(L/K) , then

{EmbTnαg}m,n∈Z and {EmbTnαg̃}m,n∈Z form dual
frames for L2(R).

Theorem 3.1 is proved using the characterizations
of dual pairs of Gabor frames and wavelet frames in
Theorem 1.1 and Theorem 1.2. Again, the result has an
immediate consequence for construction of tight Gabor
frames via tight wavelet frames.

The result can, e.g., be applied to the Meyer wavelet,
which yields a construction of a tight Gabor frame
generated by a C∞(R), compactly supported function.
Details of this are provided in [2].

Let us end this note with a short explanation of why
we speak about (III.1) being a reverse transform of (II.1).
If we start with a sufficiently well behaving function
ψ and use the transform (III.1), we obtain the function
g(x) = ψ̂(θx). Going “back” with the procedure in (II.1)
applied on the function g, we arrive at the function

ϕ̂(γ) = g(logθ(|γ|)) = ψ̂(θlogθ(|γ|)) = ψ̂(|γ|), γ ̸= 0.

So, if the function ψ̂ is symmetric, we have that ϕ = ψ.

On the other hand, starting with a function g and
using (II.1), we obtain the function ψ, given by ψ̂(γ) =
g(logθ(|γ|)), γ ̸= 0; applying the approach in (III.1) on
ψ̂ leads to the function

h(x) = ψ̂(θx) = g(logθ(|θx|)) = g(x), x ∈ R.

Thus, we get the original function back.
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