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Abstract—Recent advances in convex optimization have led to
new strides in the phase retrieval problem over finite-dimensional
vector spaces. However, certain fundamental questions remain:
What sorts of measurement vectors uniquely determine every
signal up to a global phase factor, and how many are needed
to do so? This paper presents several results that address
these questions, specifically in the less-understood complex case.
In particular, we characterize injectivity, we identify that the
complement property is indeed necessary, we pose a conjecture
that 4M − 4 generic measurement vectors are necessary and
sufficient for injectivity in M dimensions, and we describe how
to prove this conjecture in the special cases where M = 2, 3.
To prove the M = 3 case, we leverage a new test for injectivity,
which can be used to determine whether any 3-dimensional
measurement ensemble is injective.

I. INTRODUCTION

Phase retrieval is the problem of recovering a signal from
absolute values (squared) of linear measurements, called in-
tensity measurements. However, non-injectivity is inherent to
many measurement processes. For instance, intensity measure-
ments with the identity basis effectively discard all phase
information contained in the signal’s entries. As a result,
many researchers invoke a priori knowledge of the desired
signal in order to restrict to a smaller signal class over which
the intensity measurements might be injective. To avoid the
various ad hoc methods that invariably follow, an alternative
approach to phase retrieval, as introduced in 2006 by Balan,
Casazza and Edidin [3], seeks injectivity by designing a
larger ensemble of intensity measurements. Using this ap-
proach, Balan et al. [3] characterized injectivity in the real
case and further leveraged algebraic geometry to show that
4M−2 intensity measurements suffice for injectivity over M -
dimensional complex signals. This has since sparked a search
for practical phase retrieval guarantees. For example, viewing
intensity measurements as Hilbert-Schmidt inner products
between rank-1 operators, Candès, Strohmer and Voroninski
[7] applied certain intuition from convex optimization to re-
construct the desired M -dimensional signal with semidefinite
programming using only O(M logM) random measurements.
Another approach uses the polarization identity to discern
relative phases between certain intensity measurements using
O(M logM) random measurements in concert with an ex-
pander graph [1].

Despite these recent advances in phase retrieval algorithms,

there remains a lack of understanding about the fundamen-
tal requirements for intensity measurements to be injective.
For example, it was widely believed that 3M − 2 intensity
measurements sufficed for injectivity, until recently disproved
by Heinosaari, Mazzarella and Wolf [10] using embedding
theorems from differential geometry. Heinosaari et al. were
able to establish the necessity of (4 + o(1))M measurements
for injectivity, but the following problem still remains:

Problem 1. What are the necessary and sufficient conditions
for measurement vectors to lend injective intensity measure-
ments?

This paper addresses this problem by first providing the
only known characterization of injectivity in the complex case
(Theorem 4). Next, we make a rather surprising identification:
that intensity measurements are injective in the complex case
precisely when the corresponding phase-only measurements
are injective in some sense (Theorem 5). We then use this
identification to establish the necessity of the complement
property for injectivity (Theorem 7). Later, we conjecture that
4M − 4 intensity measurements are necessary and sufficient
for injectivity in the complex case, which we validate in
the cases where M = 2, 3 (Theorems 10 and 12). We also
introduce a new test for injectivity, which we then use to
verify the injectivity of a certain quantum-mechanics-inspired
measurement ensemble; with this ensemble, we conclude by
suggesting a refinement of Wright’s conjecture from [12]
(see Conjecture 13). The proofs of the presented results are
provided in [4].

Before we begin, let Φ = {ϕn}Nn=1 in V = RM or CM be
a given collection of measurement vectors and consider the
intensity measurement process defined by

(A(x))(n) := |〈x, ϕn〉|2.

Note that A(x) = A(y) whenever y = cx for some scalar c of
unit modulus. Thus, the mapping A : V → RN is necessarily
not injective. To resolve this issue, we consider sets of the
form V/S, where S is a multiplicative subgroup of the field
of scalars. This notation means to identify vectors x, y ∈ V
which satisfy y = cx for some scalar c ∈ S, and we write
y ≡ x mod S to convey this identification. Most of the time,
V/S is either RM/{±1} or CM/T (here, T is the complex
unit circle), and the intensity measurement process is viewed
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as a mapping A : V/S → RN . Injectivity of the measurement
process is considered with respect to this mapping.

II. INJECTIVITY AND THE COMPLEMENT PROPERTY

Phase retrieval is impossible without injective intensity
measurements. Balan, Casazza and Edidin [3] first analyzed
injectivity by introducing the complement property, which we
define in the following:

Definition 2. We say Φ = {ϕn}Nn=1 in RM (CM ) satisfies the
complement property (CP) if for every S ⊆ {1, . . . , N}, either
{ϕn}n∈S or {ϕn}n∈Sc spans RM (CM ).

The complement property is characteristic of injectivity in
the real case:

Theorem 3. Consider Φ = {ϕn}Nn=1 ⊆ RM and the mapping
A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2.
Then A is injective if and only if Φ satisfies the complement
property.

This result was demonstrated in [3]. However, it was also
erroneously used as justification for the necessity of CP for
injectivity in the complex case. Although this statement is
indeed true, the proof of Theorem 3 overlooks the peculiarity
of equivalence modulo T and so cannot be used in the complex
setting. We will address this issue, but first we characterize
injectivity in the complex case:

Theorem 4. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping
A : CM/T → RN defined by (A(x))(n) := |〈x, ϕn〉|2.
Viewing {ϕnϕ∗nu}Nn=1 as vectors in R2M , denote S(u) :=
spanR{ϕnϕ∗nu}Nn=1. Then the following are equivalent:
(a) A is injective.
(b) dimS(u) ≥ 2M − 1 for every u ∈ CM \ {0}.
(c) S(u) = spanR{iu}⊥ for every u ∈ CM \ {0}.

Note that unlike in the real case, it is not clear whether this
characterization can be tested in finite time; instead of being
a statement about all (finitely many) partitions of {1, . . . , N},
it is a statement about all nonzero vectors u ∈ CM . We
can, however, view this characterization as an analog to the
real case, in which the complement property is equivalent to
having span{ϕnϕ∗nu}Nn=1 = RM for all nonzero u ∈ RM .
The fact that more information is lost with phase in the
complex case is what causes {ϕnϕ∗nu}Nn=1 to fail to span all
of R2M . As a result, it is still not intuitively apparent what
it takes for an ensemble of complex vectors to yield injective
intensity measurements. The following bizarre characterization
was established while working toward a clearer understanding:

Theorem 5. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping
A : CM/T → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Then
A is injective if and only if the following statement holds: If
for every n = 1, . . . , N , either arg(〈x, ϕn〉2) = arg(〈y, ϕn〉2)
or one of the sides is not well-defined, then x = 0, y = 0, or
y ≡ x mod R \ {0}.

Theorem 5 is a consequence of a more general statement
about the geometric properties of complex numbers: For

a, b ∈ C, Im ab = 0 if and only if arg(a2) = arg(b2), a = 0,
or b = 0. The proof leverages this fact within a restatement
of part (c) of Theorem 4. This seemingly unrelated result is
actually useful in correctly establishing the necessity of CP
for injectivity in the complex case. Specifically, Theorem 5,
leads to the following lemma, which in turn is used to prove
necessity (Theorem 7).

Lemma 6. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping
A : CM/T→ RN defined by (A(x))(n) := |〈x, ϕn〉|2. If A is
injective, then the mapping B : CM/{±1} → RN defined by
(B(x))(n) := 〈x, ϕn〉2 is also injective.

Theorem 7. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping
A : CM/T → RN defined by (A(x))(n) := |〈x, ϕn〉|2. If A
is injective, then Φ satisfies the complement property.

The problem alluded to earlier concerning the proof of
Theorem 3 is the reason that Theorem 7 is stated separately.
This issue is resolved by using the injectivity of B modulo
{±1}. The proof is eerily similar to that of the necessity of
CP for injectivity in Theorem 3, only using B in place of A.

We emphasize here that the complement property is nec-
essary but not sufficient for injectivity in the complex
case. To see this, consider the ensemble (1, 0), (0, 1) and
(1, 1). These certainly satisfy the complement property, but
A((1, i)) = (1, 1, 2) = A((1,−i)), despite the fact that
(1, i) 6≡ (1,−i) mod T; in general, real frames fail to lend
injective intensity measurements for the complex case. Indeed,
a sufficient condition for injectivity in the complex case has yet
to be found. As an analogy for what we really want, consider
the notion of full spark: An ensemble {ϕn}Nn=1 ⊆ RM is said
to be full spark if every subcollection of M vectors spans RM .
Full spark ensembles with N ≥ 2M−1 necessarily satisfy the
complement property, and the notion of full spark is simple
enough to admit deterministic constructions [2], [11]. Because
such constructions are particularly desirable for the complex
case, finding a good sufficient condition for injectivity is an
important problem that remains open.

III. INTRODUCING THE 4M − 4 CONJECTURE

Thinking of a matrix Φ as being built one column at a time,
the rank-nullity theorem states that each column contributes to
either the column space or the null space. If these columns are
then used as linear measurement vectors, then the subspace
that is actually sampled is described by the column space
of Φ, while the null space captures the algebraic nature of
redundancy in the measurements. An efficient sampling of an
entire vector space would therefore apply a matrix Φ having
a small null space and large column space. Although we are
not dealing with linear measurements in our case, we would
like to build our ensemble of intensity measurements so as to
sample as much of the space as possible. More precisely, we
are faced with the following question:

Problem 8. For any dimension M , what is the smallest
number N∗(M) of injective intensity measurements, and how
do we design such measurement vectors?
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To be clear, this problem was completely solved in the real
case by Balan, Casazza and Edidin [3]. Indeed, Theorem 3
immediately implies that 2M − 2 intensity measurements
are necessarily not injective, and furthermore that 2M − 1
measurements are injective if and only if the measurement
vectors are full spark.

In the complex case, Problem 8 has some history in the
quantum mechanics literature. For example, [12] presents
Wright’s conjecture that any pure state is uniquely determined
by three observables. In other words, the conjecture states that
there exist unitary matrices U1, U2 and U3 such that Φ =
[U1 U2 U3] lends injective intensity measurements. Note that
Wright’s conjecture actually implies that N∗(M) ≤ 3M − 2,
since U1 determines the norm of the signal, rendering the last
column of both U2 and U3 unnecessary. Finkelstein [8] later
proved that N∗(M) ≥ 3M−2 which, combined with Wright’s
conjecture, has led many to believe that N∗(M) = 3M − 2.
However, this was recently disproved by Heinosaari, Maz-
zarella and Wolf [10], who used embedding theorems from
differential geometry to prove that N∗(M) ≥ 4M − 2α(M −
1) − 3, where α(M − 1) ≤ log2(M) is the number of 1’s
in the binary representation of M − 1. Combined with Balan,
Casazza and Edidin’s result that N∗(M) ≤ 4M − 2, we at
least have the asymptotic expression N∗(M) = (4 + o(1))M .

The lemma that follows will help to refine our intuition
for N∗(M). Before stating the result, however, we must first
define the super analysis operator A : HM×M → RN . Given
an ensemble of measurement vectors {ϕn}Nn=1 ⊆ CM , this
operator acts on the real M2-dimensional vector space of
self-adjoint M × M matrices, HM×M , and is defined by
(AH)(n) = 〈H,ϕnϕ∗n〉HS, where 〈·, ·〉HS denotes the Hilbert-
Schmidt inner product. Note that the super analysis operator
is a linear operator which satisfies

(Axx∗)(n) = 〈xx∗, ϕnϕ∗n〉HS = |〈x, ϕn〉|2 = (A(x))(n).

To clarify, x mod T can be “lifted” to xx∗, a process which
linearizes the intensity measurement process at the price of
squaring the dimension of the vector space. This identification
is not new, and as the following lemma shows, it can also be
used to characterize injectivity:

Lemma 9. A is not injective if and only if there exists a matrix
of rank 1 or 2 in the null space of A.

Lemma 9 indicates that we want the null space of A to
avoid nonzero matrices of rank ≤ 2. This is easier when the
“dimension” of this set of matrices is small. As an exercise in
intuition, we count real degrees of freedom to get an idea of
this dimension: By the spectral theorem, almost every matrix
in HM×M of rank ≤ 2 can be uniquely expressed in the form
λ1u1u

∗
1 +λ2u2u

∗
2. The pair of coefficients (λ1, λ2) introduces

two degrees of freedom, while the vector u1, which can be
any vector in CM of unit norm and is unique up to global
phase, has a total of 2M − 2 real degrees of freedom. Finally,
u2 has the same norm and phase constraints as u1, with the
additional requirement that it must be orthogonal to u1, (i.e.,
Re〈u2, u1〉 = Im〈u2, u1〉 = 0). Thus, u2 has 2M − 4 real

degrees of freedom. In this way we expect the set of matrices
in question to have 2 + (2M − 2) + (2M − 4) = 4M − 4 real
dimensions.

If the set S of matrices of rank ≤ 2 formed a subspace
of HM×M , then we could expect it to have a nontrivial
intersection with the null space of A whenever

dim null(A) + (4M − 4) > dim(HM×M ) = M2.

By the rank-nullity theorem, this would indicate that injectivity
requires

N ≥ rank(A) = M2 − dim null(A) ≥ 4M − 4.

Of course, this logic is not valid since S is not a subspace
of HM×M . It is, however, a special kind of set: a real
projective variety (a real algebraic variety which is closed
under scalar multiplication). If S were a projective variety
over an algebraically closed field, then the projective di-
mension theorem (Theorem 7.2 of [9]) would imply that it
intersects null(A) nontrivially whenever the dimensions are
large enough: dim null(A) + dimS > dimHM×M , and so
injectivity would require N ≥ 4M − 4. Unfortunately, this
theorem is not valid when the field is R; for example, the
cone defined by x2 +y2−z2 = 0 in R3 is a projective variety
of dimension 2, but its intersection with the 2-dimensional
xy-plane is trivial, despite the fact that 2 + 2 > 3.

In the absence of a proof, we pose the natural conjecture:

The 4M − 4 Conjecture. Consider Φ = {ϕn}Nn=1 ⊆ CM
and the mapping A : CM/T→ RN defined by (A(x))(n) :=
|〈x, ϕn〉|2. If M ≥ 2, then the following statements hold:
(a) If N < 4M − 4, then A is not injective.
(b) If N ≥ 4M − 4, then A is injective for generic Φ.

For the sake of clarity, we state what is meant by the word
“generic.” A real algebraic variety is the set of common zeros
of a finite set of polynomials with real coefficients. Taking all
such varieties in Rn to be closed sets then defines the Zariski
topology on Rn. If we view Φ as a member of R2MN , we then
say a generic Φ is any member of some nonempty Zariski-
open subset of R2MN . Since Zariski-open sets are either empty
or dense with full measure, genericity is a particularly strong
property. As such, another way to state part (b) of the 4M −4
conjecture is “If N ≥ 4M−4, then there exists a real algebraic
variety V ⊆ R2MN such that A is injective for every Φ 6∈ V .”
The work of Balan, Casazza and Edidin [3] already proves this
for N ≥ 4M − 2. Furthermore, Bodmann and Hammen [5]
establish that whenever N ≥ 4M −4, there exists Φ such that
A is injective, so for (b), it only remains to show that generic
Φ make A injective.

The following results are given in the interest of resolving
the 4M − 4 conjecture:

Theorem 10. The 4M − 4 Conjecture is true when M = 2.

Since in this case injectivity is equivalent to having a full-
rank super analysis operator (see Lemma 9), Theorem 10
can be established by defining the real algebraic variety
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Algorithm 1 The HMW test for injectivity when M = 3

Input: Measurement vectors {ϕn}Nn=1 ⊆ C3

Output: Whether A is injective
Define A : H3×3 → RN such that AH = {〈H,ϕnϕ∗n〉HS}Nn=1 {assemble the super analysis operator}
if dim null(A) = 0 then

“INJECTIVE” {if A is injective, then A is injective}
else

Pick H ∈ null(A), H 6= 0
if dim null(A) = 1 and det(H) 6= 0 then

“INJECTIVE” {if A only maps nonsingular matrices to zero, then A is injective}
else

“NOT INJECTIVE” {in the remaining case, A maps differences of rank-1 matrices to zero}
end if

end if

V = {A : Re detA = Im detA = 0} and showing that V c

is nonempty, and therefore dense with full measure. Before
stating the analogous result for M = 3, we introduce the
HMW test for injectivity (see Algorithm 1); we name it after
Heinosaari, Mazarell and Wolf, who implicitly introduce this
algorithm in their paper [10].

Theorem 11. When M = 3, the HMW test correctly deter-
mines whether A is injective.

The proof of Theorem 11 relies heavily on Lemma 9. For the
case of dim null(A) = 2, an application of the intermediate
value theorem shows that a singular matrix of rank 1 or 2 can
always be constructed from matrices in the null space of A.

Theorem 12. The 4M − 4 Conjecture is true when M = 3.

The proof of Theorem 12 first constructs the real algebraic
variety V of matrices U , each gotten by a generalized cross
product of a basis for the range of the adjoint of some A, and
further satisfying detU = 0; the first part ensures that U spans
the null space of A, while at the same time being defined using
polynomials of the entries of the matrix representation of A.
The HMW test is then used to show that V c is nonempty.

Note that the HMW test can be used to test for injectivity
in three dimensions regardless of the number of measurement
vectors. Thus, it can be used to evaluate ensembles of 3 × 3
unitary matrices for quantum mechanics. For example, con-
sider the 3 × 3 fractional discrete Fourier transform, defined
in [6] using discrete Hermite-Gaussian functions:

Fα =
1

6

 3 +
√
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√
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√
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2
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It can be shown by the HMW test that Φ = [I F 1/2 F F 3/2]
lends injective intensity measurements. This leads to the
following refinement of Wright’s conjecture:

Conjecture 13. Let F denote the M ×M discrete fractional
Fourier transform defined in [6]. Then for every M ≥ 3, Φ =
[I F 1/2 F F 3/2] lends injective intensity measurements.
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