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Abstract—The theory of compressive sensing (CS) has opened
up new opportunities in the field of optical imaging. However, its
implementation in this field is often not straight-forward. We list
the implementation challenges that might arise in compressive
imaging and present some solutions to overcome them.

I. INTRODUCTION

Compressive sensing (CS) theory introduced a new
paradigm for sampling and, subsequently, stimulated interest
in its application in various fields. Imaging is a natural field
for the implementation of CS theory because typical images
involve a large amount of data, which facilitates efficient
compression. Compressive imaging (CI) techniques were de-
veloped for various purposes, such as reducing hardware [1,
2], shortening image scanning time [1, 3], increasing image
resolution [4-6] [7] and improving other imaging performance
parameters [8]. CI techniques have been developed for motion
tracking [9], spectral imaging [10] and holography. A review
of CI techniques may be found in [11].

Principles of CI system design differ drastically from the
principles used for conventional imaging. Conventional imag-
ing seeks to perform isomorphic mapping; that is, to create
images that are exact replica of the object. Ideally, each
object point is mapped to a single pixel sensor so that,
besides simple geometrical transformation (e.g., inversion), the
captured image is a sharp copy of the object. In contrast,
CS acquisition guidelines prescribe some way of mixing the
information so that multiple image points are projected onto a
single pixel sensor. The preferred projection is a random one
so that all object points are randomly spread on the image
sensors.

When coming to apply the CS framework for optical imag-
ing and sensing one needs to consider the special characteris-
tics of the optical data collection systems. In Sec. II we discuss
the special issues and implementation limitations arising in
the application of CS for optical imaging and sensing. The
implementation limitations can be significantly reduced by
intelligently compromising the guidelines for optimal universal
CS. For instance, instead of using random projections one
may use some kind of structured pseudo random projection
scheme. Random convolution [12] is such an example. In
subsections III A, B we present another two examples. The CI

implementation challenges may also be bypassed if a specific-
task system is to be designed. For example, if the task is to
track motion in the scene, a technique as described in Sec. IIIC
can be efficiently applied. Fortunately, there are also cases in
which the optical sensing mechanism fits the CS guidelines
well. Such a case is demonstrated in Sec. IV.

II. SPECIAL ASPECTS OF APPLICATION OF CS FOR
IMAGING

Let us consider a conventional CS measurement scheme:

g = Φf (1)

where the signal f is assumed to be k -sparse (or at least
compressible) in a domain defined by the sparsifying operation
a = Ψf. For universal imaging tasks, Ψ should perform some
random projections. In incoherent imaging f ∈ RN , g ∈ RM

and Φ ∈ RM×Nwhile in coherent imaging f ∈ CN , g ∈ CM

and Φ ∈ CM×N . In the following, we shall consider the
particular features of the components of (1) in the context
of optical imaging and sensing.

A. The input signal
In optical sensing, the input signal f represents the features

of the ”object”, such as the spatial, spatio-temporal, spectral
or polarimetic distributions of the electromagnetic field or of
the radiant power. We shall list the special features of f and
their consequences.

1) Sparsity: In most imaging scenarios, the object is indeed
highly compressiable, as required for CS. For instance, 2D
images in the visible may be compressible by a factor of 10−
50. 3D images and hyprespectral images may be even more
compressible.

2) Physical representation dimensions: The object is typ-
ically represented as a 2D or 3D distribution. Therefore, in
order to adjust to the matrix-vector formalism of (1) the
signal is converted into the form of a vector by lexicographic
ordering. By this, analytic and computational tools devel-
oped for (1) can be directly applied; however, part of the
structural information is lost. For efficient implementation of
CS one should attempt to employ the structural information
intelligently in the sparsifying operator Ψ and by introducing
appropriate priors in the reconstruction process.
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3) Size: The signal f and measurements g are typically
large. For example, in incoherent imaging in the visible,
N can be easily of order of 107 and in multidimensional
imaging (such as in 3D images and hyperspectral images) it
can be much larger. Obviously, this leads to computational
implications in terms of reconstruction speed.

4) Non-negativity: In incoherent imaging, the signal f is
non-negative. For efficient CI, this fact should be consid-
ered in the reconstruction process by introducing appropriate
constrains in the reconstruction problem or by working with
centralized signals (with the average subtracted).

B. The System Matrix

1) Size of the matrix: The size of the system matrix is
M × N , where N and M may be of order of 105 − 107.
Therefore the size of the system matrix is huge, leading to the
following significant challenges:
Computational - Φ may require hundreds of Gigabytes of
storage and the application of reconstruction algorithms with
such large matrices is very difficult and time-consuming.
Optical realization - Realization of random Φ requires build-
ing an imaging system with a space bandwidth product (SBP)
larger than M ×N . In other words, the imaging system needs
to have at least M ×N almost independent modes, or degrees
of freedom. It is not trivial to design a system with such a large
SBP. For example, spatial light modulators that are commonly
used in CI, have an SBP of O(N). Therefore, in order to
realize × M times larger SBP, multiple measurements are
required.
Optical Calibration - Sensing systems with a large SBP also
require exhaustive and time-consuming calibration processes.
In order to calibrate Φ , one needs to measure N point spread
functions, each having M samples.

2) Non-negativity: In incoherent imaging, it is impossible
to realize a system matrix Φ with negative entries. This means
that Φ spans only the positive orthant. As a result, the mutual
coherence of Φ is lower, indicating lower compressibility. This
problem may be addressed by applying preconditioning in
the reconstruction process [13] or by doubling the number
of measurements to generate measurements equivalent to that
of a bipolar system matrix.

C. Measured signal

1) Size: Although the dimension of the measured image g
is smaller than that of the signal f (M < N), in typical CI
systems it is still large. Therefore, similar computation issues
as with f (see subsection II.A ) are relevant for g too.

2) Realness and non-negativity: Optical sensors measure
irradiance, which is real and non-negative. Negative and
complex values can be measured indirectly, typically
by acquiring multiple measurements. For example, in
compressive holography [10] complex field amplitude is
measured with temporal or spatial multiplexing.

3) Dynamic range: The dynamic range of optical sensors
is typically limited. For example, conventional, uncooled op-
toelectronic sensors in the visible have a dynamic range of
8-12 bits. At longer wavelengths, the dynamic range may be
even smaller. This may set significant limitations, particularly
in incoherent imaging, where Φ is no-negative.

III. FEASIBLE SAMPLING OPERATORS FOR OPTICAL CS

A. Separable Sensing Matrix

One way to alleviate the complexity associated with imple-
menting CI systems with random projections is by designing
sensing operators Φ that are separable in the physical dimen-
sion of the optical signal [14, 15]. For instance, for capturing
a typical 2D image, one may use a sampling operator that is
separable in the x-y directions. Mathematically, such a sensing
operator can be expressed by means of the Kronecker product
of the sensing operators in each direction, Φ = Φx⊗Φx. The
sensing operators in each direction,Φx,Φy , can be designed
to perform random projections.
The SBP of an x − y separable Φ, is O(

√
N ·M); thus the

matrix storage requirements and the optical sensing complex-
ity is reduced from O(N ·M) to O(

√
N ·M). Employing

separable Φ can be useful also in the reconstruction step as it
permits using block-iterative algorithms.
The price to be paid by using a separable sensing technique
is in reducing the compressibility performance. For instance,
a theoretical analysis in [14] showed that for 2D images,
approximately

√
N times more samples are needed to achieve

similar performance as with a non-separable random system
matrix. An empirical study in [16] showed more relaxed
requirements, indicating that the minimum number of samples
required for perfect recovery is M ≈ 1.25K log(N/k + 1).
Analysis of compressibility of signals separable in more than
two dimensions may be found in [17].
Compressive imaging with a separable sensing operator has
been demonstrated for 2D images [14, 16]. Recently, an optical
scheme implementing hyperspectral imaging with a separable
sensing operator was presented in [18].

B. Optical Radon Projections for Imaging

In [3], a CI technique is proposed that uses a cylindrical
lens to perform a Radon projection of the object plane on a
line array of sensors. The system performs a rotational scan
to capture multiple Radon projections at various angles during
the scanning process. By applying reconstruction algorithms
based on `1 minimization, the image can be reconstructed
from many fewer projections than are needed conventionally,
e.g. with filtered back-projection algorithms.
The CI approach in [3] exhibits a very good trade-off between
acquisition time and system complexity. Compared to the two
other main CI approaches, it allows a much faster scan than
with the ”single pixel camera” [1], while, on the other hand,
its implementation complexity is much lower than that of the
”single shot compressive imaging camera” [4]. The imaging
approach presented in [3] was further improved in [19], where
it is shown that angular sampling with golden angle steps
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allows progressive compressive image acquisition. Gradual
improvement of the reconstructed image is obtained by adding
new projections to the existing ones without re-sampling and
recalculation. Each new measurement increases the quality of
the previous reconstruction, as demonstrated in Fig. 1.

Fig. 1. Progressive compressive imaging with optical Radon projections,
using obtained 1.56% (top), 3.13% (middle), 5.5% (bottom) of nominal
samples (Nyquist). Image size 1280x1280 pixels.

The progressive compressive sensing approach is particu-
larly useful when no prior knowledge about the required num-
ber of samples for good reconstruction is available. This means
that the progressive Radon acquisition scheme is inherently
adjustable to the type of the object imaged. The approach is
also shown to be immune to sudden stopping of the scan-
ning process, which otherwise would be intolerable with the
uniform angular sampling scheme. An additional advantage
of the approach is that it facilitates compressive imaging of
large size images by employing ordered sets reconstruction
algorithms on subsets of the data, thus remedying otherwise
severe computation issues [19]. Note, for example, that the
images in Fig. 1 are of megapixel size.

C. Optical Radon Projections for Motion Tracking

In the case that the task of the acquisition system is change
detection or motion tracking, the signal is extremely sparse.
Consider, for example, the task of tracking a point during
10 sec. with a temporal resolution of 20 milliseconds in a
field of view of 1Megapixels. With conventional imagers, 500
Megapixels are acquired for this task, while here, the trajectory
of the moving point can be described by only 500 pairs
of Cartesian coordinates; thus K/N = 0.5 · 106. Cartesian
coordinates of moving objects can be obtained by measuring
the temporal differences of two perpendicular Radon projec-
tions. As mentioned in Sec. IIIB, Radon projections can be
obtained optically with anamorphic optical elements such as
a cylindrical lens. Figure 2 depicts the concept behind change
detection form two Radon projections. Consecutive temporal
projections are subtracted from one another, indicating the

projected location of the changes [Fig. 2 (c) and (d)]. Then
the projections may be back projected to give the location of
the changes on a Cartesian grid. Since the signal is extremely
sparse, `1 minimization algorithms are particularly efficient.

Fig. 2. Motion detection with two projections. (a) Original frame out of
2 consecutive frames; (b,c) difference between projection of two consecutive
frames; (d,e) back projection of the frame difference; (f) intersection of the
x,y back projections. The detected object is marked with white circle.

In practice, two projections are insufficient for detecting
multiple moving objects in arbitrary directions. At least three
projections are necessary to track objects moving in an ar-
bitrary direction. In [9] we developed an optical system that
essentialy perform, uses a superposition of four projections.
Simulative experiments in [9] show that this system is able
to track up to ten moving object points. Real experiments
showed that objects can be tracked within a field of view of
500 × 500 pixels with approximately 250 times less samples
than a conventional camera takes for the same task.

IV. NATURAL OPTICAL COMPRESSIVE SENSING
OPERATORS

There are cases in which the optical sensing operator
fits the CS guidelines well. One such example is the free
space propagation operator, described mathematically by the
Fresnel transform. The Fresnel diffraction of the object field
can be recorded by means of digital holography, which is
found to be a physically realizable, quite simple and yet very
efficient compressive sensing mechanism. Applying the CS
paradigm for digital Fresnel holograms is attractive from the
fact that the Fresnel and Fourier transforms are closely related.
Therefore, Fourier subsampling schemes, studied extensively
in CS literature, can be directly applied. In [20] it is shown
that for a sufficiently large propagation distance the number
of random samples in the hologram plane that is required
for full reconstruction is K logN , just like for the Fourier
sensing case. Figure 3 shows an example of the dependence
of the compressibility ratio M/N as a function of the imaging
distance. From Fig. 3 it can be seen that the number of random
Fresnel samples required to reconstruct the image exactly
decreases with the imaging distance till it reaches an asymptote
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in the region where the Fresnel propagator behaves as a Fourier
transform.

Fig. 3. Compressive sampling ratio required for full reconstruction of the
Cameraman image (inset). M/N is the compressive sensing ratio and z is
the recording distance.

For a recent review on compressive digital holography
theory and applications the reader is referred to [10].

V. CONCLUSIONS

We have overviewed the characteristics of optical imaging
that preclude straight-forward application of CS theory to
imaging. In many cases, practical and physical limitations
force the CI designer to deviate from basic CS guidelines. He
has to compromise the randomness of the sensing operator
required for universal CS by introducing some amount of
structure. We presented two examples to demonstrate this.
The implementation limitations may be much less severe
if a specific task is defined, as we have shown with our
compressive motion detection and tracking system. In some
particular cases, the particular optical sensing mechanism fits
CS guidelines well. We have described compressive hologra-
phy as an example of such a case.
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