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Abstract—Ground-penetrating radar (GPR) and electromag-
netic induction (EMI) sensors are used to image and detect
subterranean objects; for example, in landmine detection. Com-
pressive sampling at the sensors is important for reducing the
complexity of the acquisition process. However, there is a second
form of sampling done in the imaging-detection algorithms where
a parametric forward model of the EM wavefield is used to
invert the measurements. This parametric model includes all
the features that need to be extracted from the object; for
subterranean targets this includes but is not limited to type,
3D location, and 3D orientation. As parameters are added to
the model, the dimensionality increases. Current sparse recovery
algorithms employ a dictionary created by sampling the entire
parameter space of the model. If uniform sampling is done over
the high-dimensional parameter space, the size of the dictionary
and the complexity of the inversion algorithms grow rapidly,
exceeding the capability of real-time processors. This paper shows
that strategic sampling practices can be exploited in both the
parameter space, and the acquisition process to dramatically
improve the efficiency and scalability of the these EM sensor
systems.

I. INTRODUCTION

Parameter estimation of unknown objects through the use
of wavefield sensors is a well researched area. An increasingly
popular solution to these types of problems comes from
the advancements in compressive sensing (CS) and sparse
recovery [1]. These inversion algorithms rely on the fact that
a highly accurate forward model of the data could be created
to describe the dependence of the physical sensor data (i.e.,
the measurements) on the interesting parameters of the objects
being imaged. This approach highlights an issue with CS. The
inherent need for a random sensing matrix does not always
lend itself easily to practical data acquisition from sensors.
On the other hand, creating a comprehensive target model,
oftentimes called a dictionary, and referred to in the CS world
as a sparsifying transform, can quickly become too large and
too computationally intensive for real-time computers. The
data collection and imaging flow is shown in Fig. 1.

The key sampling issue is creating a dictionary of manage-
able size, even when it is desirable to add more parameters
to the model. A d-parameter, m-measurment model leads to
a dictionary of size O(N9+™), assuming equal sampling (V)
of each variable. This paper will show, through the use of
strategic parameter-space sampling, that the dimensionality of
the dictionary can be reduced in two different acquisition
environments. Thus the computational complexity of these
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parameter detection problems can be drastically reduced for
these sensor systems.

There are two different acquisition systems that are dis-
cussed in this paper. The first system is three-dimensional (3D)
imaging of subterranean targets using a ground-penetrating
radar (GPR). The typical acquisition sampling pattern in GPR
allows for reduced data acquisition time through the use of
a random sensing pattern. The simplification of sampling
the parametric forward model comes from exploiting the
translationally-invariant nature of the physical model. The
second system uses electromagnetic induction (EMI) sensors
to detect and classify underground metallic targets. In this
case, the strategic sampling of the parameter space comes
from adopting an efficient tensor model to describe the ori-
entation and magnetic polarizability of the target. This can be
extracted using a rank-minimization detection algorithm. This
model represents orientation space continuously with very
few samples, instead of requiring the entire 3D angle space
to be enumerated. This dramatically reduces computational
complexity and also increases accuracy by eliminating the off-
grid parameter sampling problem with regards to orientation.

II. GROUND-PENETRATING RADAR

The GPR system considered here is a stepped-frequency
system that has been previously described in detail [2]. The
forward model is a point-target model, and the detection
algorithm is based on sparse recovery (CS). The remainder
of this section explains how acquisition sampling and model-
parameter sampling together lead to a translational-invariance
property that can achieve the computational complexity reduc-
tions in the detection algorithm that were shown in [3].
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A. Model

The point-target model used for the detection algorithm is

g(f)€72j7rf‘r(ls,lt)
S(ls, 1)

which is a function of the stepped frequencies, f; the sensor
positions, I, = (Is(x),ls(y),0); the target locations, l; =
(Ie(z), 4 (y),lt(2)); and the spreading parameter, S(Is,1;).
This forward model, ¢ (f,1,1;), is used as the dictionary, or
sparsifying transform. If ¢ is discretized and enumerated for
all possible frequencies, sensor locations and target locations,
the resulting model ¥ is 6D. The storage requirements are
O(N®) for equal discretization of all parameters, [3]. Our
objective is to use properties inherent in the model and the
acquisition system to reduce this storage and computational
burden.

U(f L, ) = 6]

7

B. Special Properties

A special property that can be used for increased efficiency
is the fact that the model above can be translationally invariant.
A translationally-invariant model can be applied using the
Fast Fourier Transform (FFT), which eliminates the storage
requirements for each dimension having this property. The
translational-invariance property is true when the parameter
space and the measurement space are evenly sampled in the
same direction. In other words, when the target and the sensor
are moved an equal distance in a horizontal dimension, z or y,
the radar response will remain the same. Also, to use the FFT
to garner the complexity reduction, the stepped frequencies at
each sensor position, I, must be the same. This runs counter
to the usual random sampling approach in CS, but it is a
very important constraint when trying to exploit this special
property even in a CS environment.

C. Compressive Sensing Detection Algorithm

Now that the special properties in the model are identified,
the detection algorithm itself can reduce the time needed for
computation and data acquisition, if the sampling is done
properly. The idea behind CS is that if the model parameters
can be sparse, then projecting the model onto a known random
subspace with much lower dimensionality than the original can
still enable an accurate inversion [1]. Often the projections are
done with a random sampling matrix ® applied to the model,
W. For good results, ® should be independent and identically
distributed (IID) random. There are a few techniques that will
reduce the computational complexity of this general matrix
multiplication, but they do not allow for any reduction in
acquisition time for this particular GPR acquisition system
(4], [5].

To get a mix of computational complexity reduction and
data acquisition time reduction while staying within the CS
framework, a strategic ® should be designed. An in-depth
analysis of the trade-offs in designing ® for this GPR ac-
quisition system were studied by Gurbuz et al. [6]. The basic
trade-off is that the more structured ® becomes, the higher the
coherence of the dictionary, and thus the higher the number
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reducing properties

of samples required for reconstruction, but this can also allow
for reduction in data acquisition time. For this problem, some
additional structure is needed in P to exploit the translational
invariance. To use the FFT across  and y dimensions, the
full  and y must be sampled for a given f. This means that
® can be built to randomly select a small number of f to
get both a reduction in complexity for the CS algorithm, but
also reduce the data acquisition time, and amount of data that
needs to be collected.

D. Complexity Reduction

The complexity reduction for exploiting these model prop-
erties in this particular system are quite significant. In terms
of storage space, the original fully discretized parameter-space
model is 6D having a storage requirement of O(N°®). By using
the FFT and CS, the storage requirement for the dictionary
was reduced to O(MN3), where M < N is the number
of random frequency measurements. In practical application
of this method to laboratory measurements, the frequency
requirements are reduced from 401 to 10 [6]. For an actual
system, the data acquisition would take a fortieth of the time,
as well as saving a factor of 40 in the amount of storage
needed. The flow of the GPR acquisition system, the special
properties, and their effect on complexity are summarized in
Fig. 2.

There is also a rather significant reduction in algorithm time
in using the translationally-invariant model over using a direct
approach. Direct matrix multiplication for the 6D problem has
a complexity of O(N®), but the translationally-invariant model
can be applied in O(N*log,(N)) because the FFT can be
applied along two of the parameter dimensions. A semilog
plot of computation time versus problem size (V) for both of
these models in theory, and the FFT-based method in practice,
can be seen in Fig. 3. For N = 70, the FFT-based method is
more than 400 times faster. In fact, the direct method was not
measured since it cannot be applied for N = 70 because the
storage requirements are about 950 Gbytes, while the FFT-
based method requires around 200 Mbytes.

III. ELECTROMAGNETIC INDUCTION SENSOR

A different acquisition system used for collecting target data
is a multi-frequency (wideband) EMI sensor system. Multiple
sensors are scanned in a down-track pattern, acquiring a sam-
pled frequency response at uniformly spaced locations along
the scan path. The forward model is a frequency domain model
with many more parameters than the point target model [7]-
[10]. The sparse recovery algorithm used is formulated as a
combined least-squares and low-rank approximation problem.
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A. Model

The basic model used for this system is one that is written
in the frequency, w, domain, for a single target type, p,

r(w,ls, b, 00, 1) = g7 (D R(0) A(w, ))R" (0,) F(1). ()

ls = (Is(x),0,0) is sensor position, I; = (I;(x),l;(y),l:(2))
is 3D target location, o; = (oi(a),0:(B),0:(7)) is target
orientation, A(w,p) is a 3x3 matrix that defines the mag-
netic polarizability of the target, and I = [, — I, is the
relative location vector for the target if the sensor was the
origin. g(I) and f(l) are vectors that contain the spatial
components of the magnetic field on the receive coil and the
transmit coil respectively based on the relative location vector
l. R(o;) is a simple rotation matrix that rotates by angle
0;. When all the measurements, {w,ls(x)}, and parameters,
{li(z),l:(y), l1(2), 0c (), 0:(3), 0¢(7y), u}, are enumerated; the
result is a data hyper-cube of 9D. The storage requirement is
enormous when the parameter space is sampled finely enough.

An important change is to model the response as an ex-
pansion of magnetic dipoles, each with a frequency relaxation
[9]. The coefficients of the expansion can be computed from
the experimental data [11]. The coefficient for the term in the
expansion with a relaxation frequency, ¢, is

r¢(ls, 1,01, A) = g" (1) R(0)) AR (0) f(1).  (3)

Each individual ¢ can be imaged separately using the same
model (3), regardless of type. Typically, the number of relax-
ation frequencies, N¢, is between one and six. There are two
significant benefits of the expansion. First, a specific frequency
response for each target type is no longer needed. Second,
A(w, ) changes to A, which is a 3x3 diagonal, positive
semidefinite, real matrix that does not depend on w or p. These
benefits greatly reduce the storage requirements. However,
since each ( must be imaged independently, the number of
imaging steps increases from one to N¢, even though the
model itself does not depend on (.

B. Special Properties

This model (3) has two special properties. First, the model
is separable into a product of functions. There are separate
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functions for location, orientation, and magnetic polarizibility
that contribute to the product. This means that individual
parameters can be isolated from one another. The second prop-
erty comes from thinking of R(o;)AR” (o) as a “generalized
amplitude” of the target. Usually, the response of a point target
is a scalar that represents the strength of the target, but the
matrix R(o;)AR” (0;) encodes additional information about
how the target strength depends on symmetry and orientation.

To build a dictionary, there needs to be an enumeration
for every possible sample in the interesting parameter space,
but it is undesirable to enumerate all possible entries of the
matrix A along with all possible orientation angles c. To avoid
storing a large number of samples, a change can be made to
the fundamentals of sampling this model. Instead of thinking
about a point target response as having a scalar amplitude, it
can be thought of as having a tensor amplitude by rewriting
the model in (3) as

(L, i, 00, A) = g" ()T (01, A) £ (1), 4)

where T' is a symmetric, positive semidefinite matrix that is
only 3x3. This will be referred to as a “tensor amplitude.” It
has a great advantage over just the scalar amplitude. It contains
the continuous orientation and the magnetic polarizability of
the target in its eigenvectors and eigenvalues respectively. This
gives a more accurate model, because it does not require
sampling of the orientation parameter, so there is no modeling
error associated with having targets whose orientations do
not lie exactly on the sampled orientation space. Also, this
reformulation reduces a 3D grid of angle samples to just
six independent values in T'(o:, A) which provides a large
computational savings. Once T'(o:, A) is found, an eigen-
decomposition will yield o; and A.

C. Detection Algorithm

The detection algorithm for the EMI acquisition system is a
combination of least squares and a semidefinite programming
(SDP) technique used to get a low-rank approximation. The
solution to this problem is sparse in 3D, in just the same way
the GPR system is sparse. In fact, in most cases it should
be even more sparse, because the model (4) is much more
sophisticated and is looking for magnetic dipoles, and not just
a sum of point reflections.

The full problem can be solved using a block-tensor repre-
sentation to simultaneously find the target location and the
tensor amplitude through a convex relaxation to the rank-
minimization algorithm [12],

min tr(7T)

s.t. T=0,]b—¥s|<e (5)

T is a block-diagonal tensor made up of 3x3 tensors T,
one for each possible target location. b is the collected
measurement vector, ¥ is the dictionary enumerated from
(4), and s is a sparse parameter vector that makes up the
nonzero values in T'. This exploits the fact that the block-
tensor structure will be extremely low rank. This is the case
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and processing system. Complexity is reduced by exploiting special sampling
properties of parametric models for EMI.

because the rank of the large block tensor structure, T, is
just the sum of the rank of all tensor amplitudes, T, of each
present target. This work is in its initial stage of development
because the full problem is computationally intense.

A shortcut can be used to break the algorithm into two
steps to address the complexity of the full problem. Using an
orthogonal matching pursuit type technique, a least-squares
problem is solved to approximate the location of the target
first [13]. Then (5) can be recast as a very small SDP,

min tr(T})

s.t. T; >0, || b — ¥;s; ||< €, (6)

to get the tensor amplitude of the target at location, ;. The
target response is then subtracted from the measurement and
the process is repeated until the stopping criteria, a small
enough residual, is met.

The EMI system also has the translationally-invariant prop-
erty in the scanning dimension, z, just like the GPR acquisition
system. However, the detection algorithm for this model setup
is more complicated than direct matrix multiplication, so it will
be more difficult to take advantage simultaneously of both the
tensor representation property and the translational invariance
in the large problem. Such a combined algorithm would be
desirable, but it has not been implemented yet for a practical
application.

D. Complexity Reduction

The flow chart of measurement and parameter space simpli-
fications of the EMI system in Fig. 4 summarizes the special
properties exploited, and their resulting complexity reductions.
Using the dipole model is a very important computation saving
step, eliminating N2 storage, going from a data hyper-cube
of N? to N7. Using the tensor amplitude representation,
which changes the fundamentals of how the forward model
is sampled, both increases the accuracy of the solution and
garners an N3 savings to drop the overall storage requirements
to N*. This is the result of tensor sampling (which needs
six values) eliminating the need to finely sample the entire
3D orientation parameter. The EMI system also has the same
translational invariance as the GPR system, and if it were
exploited, there is another dimension of savings. Ultimately,
the result of taking advantage of these special properties could
obtain a savings of N6.

IV. CONCLUSION

This paper emphasizes the importance of the model rep-
resentation. How the measurements are acquired, how the
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parameter space of the forward model is sampled, and how
these two sampling operations can be adjusted to take ad-
vantage of special properties can all contribute to reducing
the computational complexity. The tensor representation is
also a different way to think about modeling data, and has
been exploited in other applications such as seismic [14].
Using discrete values to provide continuous responses can
allow for more accurate models while still harnessing the
power of computers. A variation of this idea has been done
in modeling continuous signals with Taylor series and cosine
representations which allow for discrete values to be ac-
quired [15]. The advantages of these sampling structures have
been shown to drastically reduce computational complexity,
increase accuracy, and reduce data acquisition times when
combined with dictionary based detection algorithms.
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