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Abstract—In this paper we investigate the performance of a
combined Compressive Sensing (CS) Constant False Alarm Rate
(CFAR) radar processor under different interference scenarios
using both the Cell Averaging (CA) and Order Statistic (OS)
CFAR detectors. Using the properties of the Complex Ap-
proximate Message Passing (CAMP) algorithm, we demonstrate
that the behavior of the CFAR processor is independent of
the combination with the non-linear recovery and therefore its
performance can be predicted using standard radar tools. We
also compare the performance of the CS CFAR processor to that
of an /;-norm detector using an experimental data set.

I. INTRODUCTION

Compressive Sensing (CS) is a novel data acquisition
scheme that enables reconstruction of sparse signals from
highly undersampled measurements. In many radar applica-
tions, such as air traffic control, obstacle avoidance, and wide
area surveillance, it is reasonable to assume that the scene is
sparse, since the number of targets is much smaller than the
number of resolution cells in the illuminated area. Examples
of CS applied to radar can be found in [1]-[5].

However, while classical radar architectures use well-
established processing algorithms and detection schemes, such
as Matched Filtering (MF) and Constant False Alarm Rate
(CFAR) detectors, the reconstruction of the target scene from
the CS measurements involves the use of highly nonlinear
algorithms such as /;-norm minimization. These algorithms
have a number of parameters that must be tuned properly in
order to achieve good performance. The optimal value of the
parameters depend on both the underlying noise power and the
number of non-zero coefficients. Hence, in a practical scenario,
where neither the disturbance variance nor the number of
targets are known a priori, it is not clear how to tune these
parameters to achieve the desired performance.

In most operational radars, to deal with the uncertainties
about the background and the interference scenario, CFAR
processors are widely used for adaptive target detection.
Several CFAR schemes have been designed to attain good
performance in the presence of different types of clutter and
target scenarios [6]—[8]. The modeling and prediction of False
Alarm Probability (FAP) is essential for the design of CFAR
schemes. This in turn requires some level of knowledge of the
underlying noise (or clutter) distribution that is input to the
detector. Designing CFAR schemes seem to be out of reach
for CS radar systems, due to the so far unknown relations
between FAP/noise statistics and the parameters involved in
the ¢1-norm reconstruction.
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In [5], [9] we show that, using the properties of the
Complex Approximate Message Passing (CAMP) [10], CFAR
processing can be combined with /;-minimization to obtain
fully adaptive detection schemes. In this paper, we further
investigate the performance of the joint CS CFAR detector in
combination with both the Cell Averaging (CA) and the Order
Statistic (OS) CFAR processors under different interference
scenarios using a set of CS radar measurements.

II. COMPLEX APPROXIMATE MESSAGE PASSING (CAMP)

In CS, we are concerned with the problem of recovering a
k-sparse signal xo € CV from an undersampled set of linear
measurements y € C™ of the form

6]

where A € C"*¥ is the sensing matrix, and n is complex
white Gaussian noise with variance 02,. Let n < N and define
0=n/N and p = k/n.

Since the number of measurements n is smaller than the
number of signal samples NV, the problem of recovering xq
is ill-posed. However, under certain conditions on A, n, and
k the following convex optimization problem, known in the
literature as the LASSO [11] or Basis Pursuit Denoising
(BPDN) [12], recovers a close approximation of xg [13], [14]:

y = Axo +n,

- 1
% = min _ly — Ax|3 + x| @

where A is a regularization parameter that controls the trade
off between the sparsity of the solution and the ¢5-norm of the
residual. Finding the “optimal” value of X is a major practical
problem when dealing with CS reconstruction algorithms. In
particular, for radar applications the relations between the
parameter A and the detection and false alarm rates are
unknown.

The Complex Approximate Message Passing (CAMP) is an
iterative algorithm for solving (2) for signals in the complex
domain.! Interestingly, the CAMP algorithm has a number
properties that enable us to solve both the problem of optimal
tuning and adaptive target detection. These properties are
summarized in P1-P3 [10], [15], [16]:

P1: Under an appropriate tuning of the regularization param-
eter used in CAMP and the parameter A in (2), CAMP
solves LASSO exactly. See Section 3.4 in [10].

A detailed description of the algorithm and its properties can be found in
[51, 91, [10].
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P2: At every iteration, X! can be considered as xo+w?, where
the distribution of w' converges to complex Gaussian
with zero mean and variance af. See Section 3.4 in [10].
The performance of CAMP can be predicted theoretically
by the so-called state evolution equation. See Section 3.1
in [10].

An important relation derived from the analytical framework
used in CAMP is that the variance of the total noise o7
present in the signal x at each iteration ¢ is expressed as a
linear combination of the input noise variance and the MSE
of the solution: MSEFM.2 In CAMP an estimate 67
of the noise variance is computed at each iteration by means
of median filtering.

Also, using the signal-plus-noise model described in P2,
the problem of tuning the regularization parameter in CAMP,
which we refer to as 7, can be easily solved. Amongst all
7, the optimal threshold 7, in CAMP is the one that achieves
the minimum MSE or, equivalently, the minimum o2, . For the
practical case of unknown signal and noise statistics, we can
use the Adaptive CAMP algorithm described in [9] to obtain
a good estimate 7, of the optimal threshold multiplier 7,. The
optimum estimated threshold 7, is the one that minimizes the
estimated CAMP output noise variance. This choice, in turn,
also maximizes the recovery SNR of CAMP.

P3:

III. CS TARGET DETECTION USING CAMP

In radar, the detection problem is to determine the presence
or absence of a target in a given range/Doppler bin when the
received signal is corrupted by noise and clutter. In practice,
both the noise and clutter power are unknown a priori, and
therefore an adaptive detection scheme must be designed.
Also, it is desirable that the detector has the CFAR property.
‘We consider here two different CS CAMP based architectures,
whose block diagrams are shown in Figure 1.

In the first system, the CS reconstruction is considered as the
detector itself. This implies that in CAMP we should set the
threshold, say 7., such that the desired FAP « is achieved. It is
shown in [5] that for complex signals, if xo = 0, then setting
the CAMP threshold 7, = v/— In « results in a FAP equal to
. We will refer to this detection strategy as Architecture 1;
its block diagram is shown in Figure 1(a).

However, theoretical and empirical results [9] show that
better performance can be achieved in terms of detection (FPy)
and false alarm probability (Py, or FAP) if the CS recovery
is followed by a second detector. This means that, just as in
conventional radar processing, we can use the recovery stage
(a Matched Filter (MF) in classical architectures) to maximize
the recovery SNR (i.e., maximize detection for a given FAP),
and later use the detector to obtain the desired FAP. In this

2Specifically, for the case of Gaussian sensing matrices, at the fixed point
solution (¢ — 00), the relation o5, = afn + %MSEoo holds; see [10], [15]
for a more detailed analysis on the (C)AMP input/output relations. From the
previous equation, it is clear that the CAMP total output noise power is the
sum of the effective system noise plus noise introduced by the recovery itself.
Consequently, for a given input SNR, minimizing MSE also minimizes the
output noise variance and therefore maximizes the reconstruction (or recovery)
SNR.
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Fig. 1. Detection schemes based on CAMP. Note that in Architecture 2 the
output of CAMP is the noisy version of the estimated signal X.

case the CAMP threshold is selected to achieve the minimum
MSE at the output of CAMP, i.e., 7 = 7, and 7, is estimated
using Adaptive CAMP. We refer to this scheme as Architecture
2. In this architecture, the input to the detector is the signal
x. According to P2, this signal can be modeled as the sum of
the true observable x¢ plus Gaussian noise.

Thanks to the statistical properties of CAMP summarized
in P1-P3, the CAMP thresholds can now be set, adaptively in
Architecture 2 and as a function of the FAP for Architecture
1.

Ideally, if the noise statistics were homogeneous, stationary
and known, the detector threshold in Architecture 2 could be
set once and remain fixed. This represents the ideal case of a
fixed threshold (FT) detector. In practice, however, these con-
ditions are never satisfied and CFAR processors are employed
to adaptively estimate the detector threshold x(a) when the
noise statistics are not known in advance. In CFAR schemes
the cell under test (CUT) is tested for the presence of a target
against a threshold that is derived based on an estimated clutter
plus noise power. The cells surrounding the CUT (CFAR
window) are used to derive an estimate of the background
and they are assumed to be target free. The great advantage
of CFAR schemes is that they are able to maintain a constant
false alarm rate via adaptation of the threshold to a changing
environment. It is known that for the case of homogeneous
Gaussian background, the optimum CFAR processor is the
well-known Cell Average CFAR (CA-CFAR) detector [6].
However, in situations in which the clutter changes rapidly or
in the presence of interfering targets in the CFAR window, or
when the clutter and noise distribution are not Gaussian, the
CA-CFAR detector performance degrades severely. For this
reason many alternative CFAR schemes have been developed
in the past, such as the Order Statistic (OS) CFAR detector
[71, [8]. In OS-CFAR processing, the power received from
the cells in the CFAR window are rearranged in increasing
order and the kth ordered cell (order statistic) is used as an
estimate of the environment. OS-CFAR processing has the
advantage of being robust against interfering targets in the
CFAR window and clutter power transitions, while preserving
reasonably good performance in homogenous background.
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IV. EXPERIMENTAL DATA

In the this section, we compare the performance of the pro-
posed detection schemes under different interference scenarios
using a set of experimental CS radar measurements.

A. Experimental Set-up

In our experiments, we consider the case of a one di-
mensional radar operating in the range domain. We use as
targets five stationary corner reflectors with different Radar
Cross Sections (RCS). For each transmitted waveform 300
measurements (with the same set-up) were performed.

The measurements were carried out at Fraunhofer FHR,
in Germany, using the LabRadOr experimental radar system
described in [S]. We used a stepped frequency (SF) waveform
and the TX signal consists of a number of discrete frequencies
fm- In the Nyquist case (that represents unambiguous mapping
of ranges to phases over the whole bandwidth) we transmit
N = 200 frequencies over a bandwidth of 800 MHz. The
achievable range resolution is therefore §p = 18.75 cm. Each
frequency is transmitted during 0.512 us, corresponding to a
bandwidth of By = 1.95 MHz, and sequential frequencies are
separated by A f = 4 MHz, resulting in an unambiguous range
of AR = 37.5 m.

In the CS case, the number of TX frequencies is reduced
from N to n (n < N). The subset of transmitted frequencies
is chosen uniformly at random within the total transmitted
bandwidth, with the constraints that we always use the first
and last frequencies in the bandwidth (to span the same total
bandwidth to preserve range resolution), and we also force
at least two of the transmitted frequencies to be separated by
the nominal frequency separation Af, to guarantee that the
unambiguous range is preserved.

After reception and demodulation each range bin maps to n
phases proportional to the n transmitted frequencies, and the n
samples y,,, m = 1,--- ,n, of the compressed measurement
vector y are given by

N
1 —jan fmri/cC

Ym = —= Yy e ITImTi g 3
e

where r; =179 + i AR/N, and ¢ = 1,..., N is the range bin

index.

B. Results

In this section, we use ROC curves to analyze the perfor-
mance of the the two CAMP based detection schemes for
both interfering and non-interfering target scenarios, which we
obtain by changing the CFAR window size. For Architecture
2, we combine the CAMP recovery with both the CA and OS
CFAR processors.

Figure 2 exhibits the signals reconstructed by using the two
CAMP based architectures introduced in Section III in addition
to the MF, which represent the reference case. We use § = 0.5
for the CS measurements and N = 200 measurements for the
MF. There are five corner reflectors (T1-T5) at ranges from
20m to 36m. For Architecture 1, 7, was set using o = 104,
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Fig. 2. Reconstructed range profile using CAMP Architectures 1 and 2, and
the MF. For the MF, N = 200 (i.e., no subsampling); for all other schemes
n = 100 and § = 0.5. The y-axis is in log scale and arbitrary units [au].

Notice that the signal from Architecture 2 is a noisy version of
the estimated sparse signal before soft thresholding is applied,
whereas the signal estimated from Architecture 1 is the sparse
signal, where each non-zero coefficient represents a detection.

In the interest of space, we report only the ROC curves for
target T3. For the other targets, the behavior of the detectors
is the same, although the actual values of P, are different
due to the different SNRs of both the desired target and the
interferers. For estimating P;, we used the detection at the
location of the highest target peak. For Architecture 2 we use
both the CA and OS CFAR processors, preceded by a Square
Law (SL) detector. For the CFAR processors, we use 4 guard
cells and 3 different CFAR windows of length 20, 40 and 90
respectively. For the OS-CFAR, the selected order statistic is
chosen as kog = 0.6%.

Note that for all detector cases (adaptive and non-adaptive),
the CAMP reconstruction threshold 7, of Architecture 2 is
always adaptive, whereas in Architecture 1 the threshold 7, is
non-adaptive and fixed. Furthermore, the performance of the
two architectures are upper bounded by the performance of
Architecture 2 that uses an ideal (non-adaptive) fixed threshold
(FT) detector instead of a CFAR one.

Figure 3(a) shows the ROC curve for T3 with a CFAR
window of length M = 20. For this choice of M, none of the
other targets fall in the CFAR window of T3, and therefore
the CA-CFAR processor performs better than the OS one.
Furthermore, we can see that it also outperforms Architecture
1, where the noise variance is estimated inside the CAMP
algorithm using the median estimator. Therefore, Architecture
1 is similar to an OS processor that uses the entire range as the
CFAR window and kpg = 0.5. Clearly, in this case the CA-
CFAR performs better than both the OS and Architecture 1,
since it excludes the other targets from the (local) estimation
of the noise level, therefore resulting in an unbiased estimate.
For this window size, CA is the best choice since there are no
noise/clutter power transition, and the targets are never in the
reference window of one another.

Figures 3(b) and 3(c) show the results for the same data set
but for CFAR windows of sizes 40 and 90, which result in 2
and 3 interferers in the CFAR window of the target of interest.
In both cases we observe that, in accordance with conventional
CFAR processing, Architecture 2 with OS-CFAR outperforms
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(c) CFAR window length M = 90

Fig. 3.  ROC curves for T3 using Architecture 1 (blue), and Architecture
2 in combination with FT detector (black), CA-CFAR (red), and OS-CFAR
(magenta) processors. For the OS-CFAR processor, kos = 0.6M. § = 0.5.

Architecture 2 with CA-CFAR but performs very similarly
to Architecture 1. Furthermore, the performance of the CA-
CFAR processor degrades as the number of interfering targets
in the reference window increases. Note that the ROC curve
of Architecture 1 (and also Architecture 2 with FT detector)
is unchanged for different CFAR window sizes. In fact, for
Architecture 1 we do not use a CFAR processor and the
CAMP reconstruction is independent of the locations of the
targets, as it uses the whole range response. It is clear that, in
cases where there might be multiple interfering targets either
an OS-CFAR processor should be used after Architecture 2
or otherwise the theoretically suboptimum Architecture 1 can
represent a simple, effective alternative to CFAR processing.
However, the disadvantage of Architecture 1 is that it lacks the
local adaptivity provided by CFAR processing. Clearly, there
is a trade off between the number of range bins used for the
noise power estimation and the bias in the estimate that can
be caused by including in the reference window interfering
targets and /or noise and clutter power transitions.
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V. CONCLUSIONS

In this paper we compare the results of different CS based
radar detection architectures. From the experimental results we
conclude that:

o the combination of CS with standard CFAR processing
does not alter the behavior of the CFAR processor com-
pared to the case when this is used in combination with
a standard MF;

in the presence of interfering targets in the CFAR window,
as expected, OS is better than CA-CFAR processing;
although the performance of Architectures 1 and Archi-
tecture 2 plus OS-CFAR are similar, Architecture 2 seems
to be preferable as it leaves the user the freedom to chose
the most appropriate processing parameters and it allows
to perform a local adaptation of the threshold. With the
combined architecture, the CFAR loss can be controlled
by changing both the type of CFAR processor and the
window length.
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