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Abstract—The aim of this paper is to study the approximation
properties of generalized sampling operators in Lp(R)-space in
terms of an averaged modulus of smoothness.

I. INTRODUCTION

For the uniformly continuous and bounded functions f ∈
C(R) the generalized sampling series are given by (t ∈ R;
w > 0)

(Swf)(t) :=

∞∑
k=−∞

f(
k

w
)s(wt− k), (1)

where the condition for the operator Sw : C(R) → C(R) to
be well-defined is

∞∑
k=−∞

|s(u− k)| <∞ (u ∈ R), (2)

the absolute convergence being uniform on compact intervals
of R.

If the kernel function is

s(t) = sinc(t) :=
sinπt

πt
,

we get the classical (Whittaker-Kotel’nikov-)Shannon opera-
tor,

(Ssinc
w f)(t) :=

∞∑
k=−∞

f(
k

w
) sinc(wt− k).

A systematic study of sampling operators (1) for arbitrary
kernel functions s with (2) was initiated at RWTH Aachen
by P. L. Butzer and his students since 1977 (see [1], [2], [3]
and references cited there).

Since in practice signals are however often discontinuous,
this paper is concerned with the convergence of Swf to f
in the Lp(R)-norm for 1 6 p < ∞, the classical modu-
lus of continuity being replaced by the averaged modulus
of smoothness τk(f ; 1/w)p. For the classical (Whittaker-
Kotel’nikov-Shannon) operator this approach was introduced
by P. L. Butzer, C. Bardaro, R. Stens and G. Vinti (2006) in
[4] (see also [5]) for 1 < p < ∞. For time-limited kernels s
this approach was applied for 1 6 p < ∞ in [6] and [7]. In
this paper we use this approach for band-limited kernels for
1 6 p <∞.

In this paper we study an even band-limited kernel s, defined
by an even window function λ ∈ C[−1,1], λ(0) = 1, λ(u) = 0
(|u| > 1) by the equality

s(t) := s(λ; t) :=

1∫
0

λ(u) cos(πtu) du. (3)

We first used the band-limited kernel in general form (3)
in [8], see also [9], [10]. We studied the generalized sampling
operators SW : C(R)→ C(R) with the kernels in form (3) in
[11]-[12]. We computed exact values of operator norms

‖Sw‖ := sup
‖f‖C61

‖Swf‖C = sup
u∈R

∞∑
k=−∞

|s(u− k)| (4)

and estimated the order of approximation in terms of the
classical modulus of smoothness. In this paper we give similar
results for Lp(R) norm in terms of the averaged modulus of
smoothness. The main result of this paper, Theorem 2, was
proved for f ∈ C(R) in [11].

II. PRELIMINARY RESULTS

A. Averaged modulus of smoothness

In this section we follow the approach of Butzer et al [4] of
convergence problems of Shannon sampling series in a suitable
subspace of Lp(R).

Let f ∈M(R) be measurable and bounded on R, and δ > 0.
The k-th averaged τ -modulus of smoothness for 1 6 p 6 ∞
is defined as ([4], Def. 1)

τk(f ; δ)p := ‖ωk(f ; ·; δ)‖p, (5)

where ωk(f ; t; δ) is a local modulus of smoothness of order
k ∈ N at t ∈ R,

ωk(f ; t; δ) :=

:= sup{|∆k
hf(x)|;x, x+ kh ∈ [t− kδ

2
, t+

kδ

2
]},

where the classical finite forward difference is given by

∆k
hf(x) =

k∑
`=0

(−1)k−`
(
k

`

)
f(x+ `)h). (6)
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The classical modulus of smoothness can be estimated via the
τ -modulus (see [4], Proposition 4)

ωk(f ; δ)p 6 τk(f ; δ)p (1 6 p <∞).

B. The space Λp

Since the sampling series Swf of (1) of an arbitrary Lp-
function f may be divergent, we have to restrict the matter
to a suitable subspace. Further, since we want to use the τ -
modulus as a measure for the approximation error, we have
to ensure that it is finite for all functions under consideration.
In [4] it was proved that we can define a suitable subspace as
follows

Definition 1 ([4], Def. 10, [6], Def. 2.1):
(a) A sequence Σ := (xj)j∈Z ⊂ R is called an admissible
partition of R or an admissible sequence, if it satisfies

0 < inf
j∈Z

∆j 6 sup
j∈Z

∆j <∞, ∆j := xj − xj−1.

(b) Let Σ := (xj)j∈Z ⊂ R be an admissible partition of R.
The discrete `p(Σ)-seminorm of a sequence of function values
fΣ on Σ of a function f : R → C is defined for 1 6 p < ∞
by

‖f‖`p(Σ) :=

∑
j∈Z
|f(xj)|p∆j


1/p

.

(c) The space Λp for 1 6 p <∞ is defined by

Λp := {f ∈M(R); ‖f‖`p(Σ) <∞
for each admissible sequence Σ}.

It can be shown (see [4], Proposition 18) that if f ∈ Λp ∩
Rloc(R) for 1 6 p <∞ we have

lim
δ→0

τk(f ; δ)p = 0, (7)

where

Rloc(R) := {f : R→ C,
is locally Riemann integrable on R}.

The assumption f ∈ Rloc(R) is related to the fact that the
τ -modulus on [a, b] tends to zero (with δ → 0+) if and only
if when f is Riemann integrable on [a, b] (see [13], Th. 1.2
and [4], Proposition 6.).

We have for 1 6 p <∞ that Bpw  W r
p  Λp  Lp, where

Bpw is the Bernstein class (e.g. [14], Def. 6.5) and

W r
p := {f ∈ Lp; f ∈ ACrloc, f (r) ∈ Lp}

is the classical Sobolev space.
In the following we consider the uniform partitions Σw :=

(j/w)j∈Z ⊂ R for w > 0 only. For these partitions we have
([6], Proposition 2.2)

‖f‖`p(w) 6 ‖f‖p +
1

w
‖f ′‖p, f ∈W r

p . (8)

Proposition 1 ([6], Th. 2.8): Let (Lw)w>0 be a family of
linear operators mapping Λp into Lp, 1 6 p < ∞, satisfying
the properties

(i) ‖Lwf‖p 6 K‖f‖`p(w), f ∈ Λp, (9)

(ii) ‖Lwg − g‖p 6 Kr
1

ws
‖g(r)‖p, g ∈W r

p , (10)

for some fixed r, s ∈ N, (s 6 r) and a constant Kr depending
only on r. Then for each f ∈ Λp there holds the estimate

‖Lwf − f‖p 6 c τr(f ;
1

W s/r
)p, W > 0, (11)

the constant c depending only on r, K and Kr.
To use Proposition 1 for Shannon sampling operators we

need the following proposition.
Proposition 2 (cf. [4], Proposition 25): For 1 6 p 6 ∞,

for some r ∈ N and s = 0, 1, . . . , r there exists a constant
cr > 0 such that for each f ∈ W r

p and w > 0 one can find a
function gw ∈ Bpπw satisfying

‖f (s) − g(s)
w ‖p 6 cr

1

wr−s
‖f (r)‖p.

C. Sampling operators

The kernel for the sampling operators Sw in (1) is defined
in the following way.

Definition 2 ([3], Def. 6.3): If s : R → C is a bounded
function such that

∞∑
k=−∞

|s(u− k)| <∞ (u ∈ R), (12)

the absolute convergence being uniform on compact subsets
of R, and

∞∑
k=−∞

s(u− k) = 1 (u ∈ R), (13)

then s is said to be a kernel for sampling operators (1).
For f ∈ Λp we have:
Proposition 3 ([6], Proposition 3.2): Let s ∈ M(R) ∩

L1(R) be a kernel. Then {Sw}w>0 defines a family of bounded
linear operators from Λp into Lp, 1 6 p <∞ (and also from
C(R) into CR with the norm (4)), satisfying (1/p+ 1/q = 1)

‖Swf‖p 6 ‖Sw‖1/q‖s‖1/p1 ‖f‖`p(w) (w > 0). (14)

If the kernel s is time-limited, i.e. there exists T0, T1 ∈ R,
T0 < T1 such that s(t) = 0 for t 6∈ [T0, T1], then in case
f ∈ Λp ∩Rloc(R) for 1 6 p <∞, we have (see [6], Th. 4.4)

lim
w→∞

‖Swf − f‖p = 0. (15)

I this paper we prove analogous result for band-limited kernels.
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D. Band-limited kernels
In the following we assume that our kernel (3) belongs to

B1
π . For the band-limited functions s ∈ Bpπ ⊂ Lp(R) the

operator norm ‖Sw‖ is related to the norm ‖s‖p by Nikolskii’s
inequality.

Proposition 4 (Nikolskii inequality; [14], Th. 6.8): Let
1 6 p 6∞. Then, for every s ∈ Bpσ ,

‖s‖p 6 sup
u∈R

{ ∞∑
k=−∞

|s(u− k)|p
}1/p

6 (1 + σ)‖s‖p.

From the Nikolskii’s inequality we see that our assumption
s ∈ L1(R) is sufficient for (12) and thus s in (3) is indeed a
kernel in the sense of Definition 2.

These types of kernels arise in conjunction with window
functions widely used in applications (e.g. [15], [16], [17],
[18]), in Signal Analysis in particular. Unfortunately bandlim-
ited kernels do not have compact support. Many kernels can
be defined by (3), e.g.

1) λ(u) = 1 defines the sinc function;
2) λj(u) := cosπ(j + 1/2)u, j = 0, 1, 2, . . . defines the

Rogosinski-type kernel (see [9]) in the form

rj(t) :=
1

2

(
sinc(t+ j +

1

2
) + sinc(t− j − 1

2
)
)

(16)

3) λH(u) := cos2 πu
2 = 1

2 (1 + cosπu) defines the Hann
kernel (see [12])

sH(t) :=
1

2

sinc t

1− t2
; (17)

III. SUBORDINATION BY TYPICAL (ZYGMUND) SAMPLING
OPERATORS

In [11] we introduced typical (Zygmund) sampling series
Zrwf for f ∈ C(R) with kernels zr ∈ B1

π defined via (3)
using the window function

λZ,r(u) := 1− u2r, r > 0.

We proved an estimate ([11], Th. 1)

‖Zrw‖ 6
2

π
log r + C (18)

Consider now an even bandlimited kernel sr ∈ B1
π defined

via (3) using the window function λr, which has a represen-
tation

λr(u) := 1−
∞∑
j=r

cj u
2j , r > 1. (19)

The condition (19) is satisfied for many kernels s ∈ B1
π .

If
∑∞
j=r |cj | log j <∞ then substituting (19) in (3) and the

last one into (1) gives a double series, where interchanging of
the order of summation is justified. Therefore, for generalized
sampling series in (1) defined by the kernel sr one has the
subordination equalities

Srwf =

∞∑
j=r

cjZ
j
wf (20)

Srwf − f =

∞∑
j=r

cj(Z
j
wf − f). (21)

Theorem 1: Let f ∈ Λp for 1 6 p <∞, r ∈ N. Then

‖Zrwf − f‖p 6Mrτ2r(f ;
1

w
)p. (22)

The constants Mr are independent of f and w. Moreover, if
f ∈ Λp ∩Rloc(R) for 1 6 p <∞, we have

lim
w→∞

‖Zrwf − f‖p = 0. (23)

PROOF: We apply Proposition 1. For (9) in Proposition 1 we
have for f ∈ Λp by Proposition 3, (18) and Nikolski inequality

‖Zrwf‖p 6 ‖Zrw‖1/q‖zr‖
1/p
1 ‖f‖`p(w) 6 ‖Zrw‖‖f‖`p(w).

Now we show that (10) in Proposition 1 holds. Let g ∈ Bpπw.
For f ∈W 2r

p we have

‖Zrwf−f‖p 6 ‖Zrw(f−g)‖p+‖Zrwg−g‖p+‖f−g‖p (24)

By Proposition 3 and (8) we have

‖Zrw(f − g)‖p 6 ‖Zrw‖1/q‖zr‖
1/p
1 ‖f − g‖`p(w)

6 ‖Zrw‖1/q‖zr‖
1/p
1 (‖f − g‖p +

1

w
‖f ′ − g′‖p). (25)

If g ∈ Bpπw, then Ssincw g = g i.e.

g(t) =
∑
k∈Z

g
( k
w

) 1∫
0

cos(π(wt− k)u) du.

Hence on the right hand side the series is uniformly convergent
and after term-by-term differentiation we get also a uniformly
convergent series (cf. [2], Th. 3.3). Therefore for r ∈ N

(−1)r

(πw)2r
g(2r)(t) =

∑
k∈Z

g
( t
w

) 1∫
0

u2r cos(π(wt− k)u) du

(26)
Now by the definition of Zrw it follows

‖Zrwg − g‖p =
1

(πw)2r
‖g(2r)‖p

6
1

(πw)2r
(‖f (2r) − g(2r)‖p + ‖f (2r)‖p). (27)

Substituting (25) and (27) in (24) and choosing finally the
function g as gw ∈ Bpπw from Proposition 2 it follows

‖Zrwf − f‖p 6 Kr
1

w2r
‖f (2r)‖p

and (10) is fullfilled. Proposition 1 yields (22). The last
assertion (23) follows from (22) and (7).

Theorem 2: Let sampling operator Srw (w > 0) be defined
by the kernel (3) with λ = λr and for some r ∈ N let

λr(u) := 1−
∞∑
j=r

cju
2j ,

∞∑
j=r

|cj | log j 6∞. (28)

Then for f ∈ Λp (1 6 p <∞)

‖Srwf − f‖p 6Mrτ2r(f ;
1

w
)p. (29)
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The constants Mr are independent of f and w. Moreover, if
f ∈ Λp ∩Rloc(R) for 1 6 p <∞, we have

lim
w→∞

‖Srwf − f‖p = 0. (30)

PROOF: We apply Proposition 1. For (9) in Proposition 1
we have for f ∈ Λp by (20), (18), Proposition 3 and Nikolski
inequality

‖Srwf‖p 6 ‖f‖`p(w)

∞∑
j=r

|cj | log j

Now we show that (10) in Proposition 1 holds. Let g ∈ Bpπw.
For f ∈W 2r

p we have

‖Srwf −f‖p 6 ‖Srw(f −g)‖p+‖Srwg−g‖p+‖f −g‖p (31)

The subordination equality (21) gives the estimate

‖Srwg − g‖p 6
∞∑
j=r

|cj |‖Zjwg − g‖p

Now we show that for g ∈ Bpπw and s 6 r there holds the
estimate ‖Zrwg − g‖p 6 ‖Zswg − g‖p. Using (26) and the
definition of Zrw we have

Zjwg(t)− g(t) = −(πw)−2
(

(Zj−1
w g)′′(t)− g′′(t)

)
(32)

Applying ([14], Th. 6.11 and Lemma 6.6) we have Zjwg ∈
B1
πw ⊂ Bpπw, hence (Zjwg − g) ∈ Bpπw and we can use the

Bernstein inequality for 1 6 p 6∞

‖(Zj−1
w g)′′ − g′′‖p 6 (πw)2‖Zj−1

w g − g‖p,

hence
‖Zjwg − g‖p 6 ‖Zj−1

w g − g‖p,

and we have

‖Srwg − g‖p 6 ‖Zrwg − g‖p
∞∑
j=r

|cj |.

Finally we use (27) and substitute the resulting estimate in
(31). The rest of the proof is the same as for Theorem 1.

IV. EXAMPLES

Now we apply Theorem 2 for some sampling operators.
Theorem 3: Let the Rogosinski-type sampling operator

Rw,j (j = 0, 1, 2, . . .) be defined by the kernel (16). Then
for f ∈ Λp (1 6 p <∞)

‖Rw,jf − f‖p 6Mjτ2(f ;
1

w
)p.

The constants Mj are independent of f and w.
PROOF: We have for the Rogosinski-type window function

λj(u) = cosπ
(
j+

1

2

)
u = 1−

∞∑
k=1

(−1)k+1π
2k(j + 1/2)2k

(2k)!
u2k

and obviously
∞∑
k=1

π2k(j + 1/2)2k

(2k)!
log k <∞.

Theorem 4: Let the Hann sampling operator Hw be defined
by the kernel (17). Then for f ∈ Λp (1 6 p <∞)

‖Hwf − f‖p 6Mτ2(f ;
1

w
)p.

The constant M is independent of f and w.
PROOF: We have for the Hann window function

λH(u) =
1

2
(1 + cosπu) = 1−

∞∑
k=1

(−1)k+1 π2k

2(2k)!
u2k.
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