Approximation by Shannon sampling operators in terms of an averaged modulus of smoothness

Andi Kivinukk
Dept. of Mathematics
Tallinn University
Narva mnt 25
Tallinn 10120, Estonia
Email: andik@tlu.ee

Gert Tamberg
Dept. of Mathematics
Tallinn University of Technology
Ehitajate tee 5
Tallinn 19086, Estonia
Email: gtamberg@staff.ttu.ee

Abstract—The aim of this paper is to study the approximation properties of generalized sampling operators in $L^p(\mathbb{R})$ -space in terms of an averaged modulus of smoothness.

I. INTRODUCTION

For the uniformly continuous and bounded functions $f \in C(\mathbb{R})$ the generalized sampling series are given by $(t \in \mathbb{R}; w > 0)$

$$(S_w f)(t) := \sum_{k=-\infty}^{\infty} f(\frac{k}{w}) s(wt - k), \tag{1}$$

where the condition for the operator $S_w:C(\mathbb{R})\to C(\mathbb{R})$ to be well-defined is

$$\sum_{k=-\infty}^{\infty} |s(u-k)| < \infty \quad (u \in \mathbb{R}), \tag{2}$$

the absolute convergence being uniform on compact intervals of $\ensuremath{\mathbb{R}}.$

If the kernel function is

$$s(t) = \operatorname{sinc}(t) := \frac{\sin \pi t}{\pi t},$$

we get the classical (Whittaker-Kotel'nikov-)Shannon operator,

$$(S_w^{\rm sinc} f)(t) := \sum_{k=-\infty}^{\infty} f(\frac{k}{w}) \operatorname{sinc}(wt - k).$$

A systematic study of sampling operators (1) for arbitrary kernel functions s with (2) was initiated at RWTH Aachen by P. L. Butzer and his students since 1977 (see [1], [2], [3] and references cited there).

Since in practice signals are however often discontinuous, this paper is concerned with the convergence of $S_w f$ to f in the $L^p(\mathbb{R})$ -norm for $1 \leqslant p < \infty$, the classical modulus of continuity being replaced by the averaged modulus of smoothness $\tau_k(f;1/w)p$. For the classical (Whittaker-Kotel'nikov-Shannon) operator this approach was introduced by P. L. Butzer, C. Bardaro, R. Stens and G. Vinti (2006) in [4] (see also [5]) for 1 . For time-limited kernels <math>s this approach was applied for $1 \leqslant p < \infty$ in [6] and [7]. In this paper we use this approach for band-limited kernels for $1 \leqslant p < \infty$.

In this paper we study an even band-limited kernel s, defined by an even window function $\lambda \in C_{[-1,1]}, \, \lambda(0) = 1, \, \lambda(u) = 0$ $(|u| \geqslant 1)$ by the equality

$$s(t) := s(\lambda; t) := \int_{0}^{1} \lambda(u) \cos(\pi t u) \ du. \tag{3}$$

We first used the band-limited kernel in general form (3) in [8], see also [9], [10]. We studied the generalized sampling operators $S_W: C(\mathbb{R}) \to C(\mathbb{R})$ with the kernels in form (3) in [11]-[12]. We computed exact values of operator norms

$$||S_w|| := \sup_{\|f\|_C \le 1} ||S_w f||_C = \sup_{u \in \mathbb{R}} \sum_{k = -\infty}^{\infty} |s(u - k)|$$
 (4)

and estimated the order of approximation in terms of the classical modulus of smoothness. In this paper we give similar results for $L^p(\mathbb{R})$ norm in terms of the averaged modulus of smoothness. The main result of this paper, Theorem 2, was proved for $f \in C(\mathbb{R})$ in [11].

II. PRELIMINARY RESULTS

A. Averaged modulus of smoothness

In this section we follow the approach of Butzer et al [4] of convergence problems of Shannon sampling series in a suitable subspace of $L^p(\mathbb{R})$.

Let $f \in M(\mathbb{R})$ be measurable and bounded on \mathbb{R} , and $\delta \geqslant 0$. The k-th averaged τ -modulus of smoothness for $1 \leqslant p \leqslant \infty$ is defined as ([4], Def. 1)

$$\tau_k(f;\delta)p := \|\omega_k(f;\cdot;\delta)\|_p,\tag{5}$$

where $\omega_k(f;t;\delta)$ is a local modulus of smoothness of order $k \in \mathbb{N}$ at $t \in \mathbb{R}$,

$$\begin{aligned} \omega_k(f;t;\delta) &:= \\ &:= \sup\{|\Delta_h^k f(x)|; x, x+kh \in [t-\frac{k\delta}{2},t+\frac{k\delta}{2}]\}, \end{aligned}$$

where the classical finite forward difference is given by

$$\Delta_h^k f(x) = \sum_{\ell=0}^k (-1)^{k-\ell} \binom{k}{\ell} f(x+\ell)h.$$
 (6)

The classical modulus of smoothness can be estimated via the τ -modulus (see [4], Proposition 4)

$$\omega_k(f;\delta)_p \leqslant \tau_k(f;\delta)_p \quad (1 \leqslant p < \infty).$$

B. The space Λ^p

Since the sampling series $S_w f$ of (1) of an arbitrary L^p -function f may be divergent, we have to restrict the matter to a suitable subspace. Further, since we want to use the τ -modulus as a measure for the approximation error, we have to ensure that it is finite for all functions under consideration. In [4] it was proved that we can define a suitable subspace as follows

Definition 1 ([4], Def. 10, [6], Def. 2.1):

(a) A sequence $\Sigma := (x_j)_{j \in \mathbb{Z}} \subset \mathbb{R}$ is called an admissible partition of \mathbb{R} or an admissible sequence, if it satisfies

$$0 < \inf_{j \in \mathbb{Z}} \Delta_j \leqslant \sup_{j \in \mathbb{Z}} \Delta_j < \infty, \quad \Delta_j := x_j - x_{j-1}.$$

(b) Let $\Sigma:=(x_j)_{j\in\mathbb{Z}}\subset\mathbb{R}$ be an admissible partition of \mathbb{R} . The discrete $\ell^p(\Sigma)$ -seminorm of a sequence of function values f_Σ on Σ of a function $f:\mathbb{R}\to\mathbb{C}$ is defined for $1\leqslant p<\infty$ by

$$||f||_{\ell^p(\Sigma)} := \left\{ \sum_{j \in \mathbb{Z}} |f(x_j)|^p \Delta_j \right\}^{1/p}.$$

(c) The space Λ^p for $1 \leqslant p < \infty$ is defined by

$$\Lambda^p := \{ f \in M(\mathbb{R}); \|f\|_{\ell^p(\Sigma)} < \infty$$

for each admissible sequence Σ }.

It can be shown (see [4], Proposition 18) that if $f \in \Lambda^p \cap R_{loc}(\mathbb{R})$ for $1 \leq p < \infty$ we have

$$\lim_{\delta \to 0} \tau_k(f; \delta)_p = 0, \tag{7}$$

where

$$R_{loc}(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{C},$$

is locally Riemann integrable on \mathbb{R} .

The assumption $f \in R_{loc}(\mathbb{R})$ is related to the fact that the τ -modulus on [a,b] tends to zero (with $\delta \to 0+$) if and only if when f is Riemann integrable on [a,b] (see [13], Th. 1.2 and [4], Proposition 6.).

We have for $1 \leqslant p < \infty$ that $B_w^p \subsetneq W_p^r \subsetneq \Lambda^p \subsetneq L^p$, where B_w^p is the Bernstein class (e.g. [14], Def. 6.5) and

$$W_n^r := \{ f \in L^p; f \in AC_{loc}^r, f^{(r)} \in L^p \}$$

is the classical Sobolev space.

In the following we consider the uniform partitions $\Sigma_w := (j/w)_{j \in \mathbb{Z}} \subset \mathbb{R}$ for w > 0 only. For these partitions we have ([6], Proposition 2.2)

$$||f||_{\ell^p(w)} \le ||f||_p + \frac{1}{w} ||f'||_p, \quad f \in W_p^r.$$
 (8)

Proposition 1 ([6], Th. 2.8): Let $(L_w)_{w>0}$ be a family of linear operators mapping Λ^p into L^p , $1 \leq p < \infty$, satisfying the properties

(i)
$$||L_w f||_p \leqslant K ||f||_{\ell^p(w)}, \quad f \in \Lambda^p,$$
 (9)

(ii)
$$||L_w g - g||_p \leqslant K_r \frac{1}{w^s} ||g^{(r)}||_p, \quad g \in W_p^r,$$
 (10)

for some fixed $r, s \in \mathbb{N}$, $(s \leq r)$ and a constant K_r depending only on r. Then for each $f \in \Lambda^p$ there holds the estimate

$$||L_w f - f||_p \le c \tau_r(f; \frac{1}{W^{s/r}})_p, \quad W > 0,$$
 (11)

the constant c depending only on r, K and K_r .

To use Proposition 1 for Shannon sampling operators we need the following proposition.

Proposition 2 (cf. [4], Proposition 25): For $1\leqslant p\leqslant \infty$, for some $r\in \mathbb{N}$ and $s=0,1,\ldots,r$ there exists a constant $c_r>0$ such that for each $f\in W^r_p$ and w>0 one can find a function $g_w\in B^p_{\pi w}$ satisfying

$$||f^{(s)} - g_w^{(s)}||_p \leqslant c_r \frac{1}{w^{r-s}} ||f^{(r)}||_p$$

C. Sampling operators

The kernel for the sampling operators S_w in (1) is defined in the following way.

Definition 2 ([3], Def. 6.3): If $s:\mathbb{R}\to\mathbb{C}$ is a bounded function such that

$$\sum_{k=-\infty}^{\infty} |s(u-k)| < \infty \quad (u \in \mathbb{R}), \tag{12}$$

the absolute convergence being uniform on compact subsets of $\ensuremath{\mathbb{R}},$ and

$$\sum_{k=-\infty}^{\infty} s(u-k) = 1 \quad (u \in \mathbb{R}), \tag{13}$$

then s is said to be a kernel for sampling operators (1).

For $f \in \Lambda^p$ we have:

Proposition 3 ([6], Proposition 3.2): Let $s \in M(\mathbb{R}) \cap L^1(\mathbb{R})$ be a kernel. Then $\{S_w\}_{w>0}$ defines a family of bounded linear operators from Λ^p into L^p , $1 \leq p < \infty$ (and also from $C(\mathbb{R})$ into $C\mathbb{R}$ with the norm (4)), satisfying (1/p+1/q=1)

$$||S_w f||_p \le ||S_w||^{1/q} ||s||_1^{1/p} ||f||_{\ell^p(w)} \quad (w > 0).$$
 (14)

If the kernel s is time-limited, i.e. there exists $T_0, T_1 \in \mathbb{R}$, $T_0 < T_1$ such that s(t) = 0 for $t \notin [T_0, T_1]$, then in case $f \in \Lambda^p \cap R_{loc}(\mathbb{R})$ for $1 \leqslant p < \infty$, we have (see [6], Th. 4.4)

$$\lim_{w \to \infty} ||S_w f - f||_p = 0.$$
 (15)

I this paper we prove analogous result for band-limited kernels.

D. Band-limited kernels

In the following we assume that our kernel (3) belongs to B_{π}^1 . For the band-limited functions $s \in B_{\pi}^p \subset L^p(\mathbb{R})$ the operator norm $\|S_w\|$ is related to the norm $\|s\|_p$ by Nikolskii's inequality.

Proposition 4 (Nikolskii inequality; [14], Th. 6.8): Let $1 \leqslant p \leqslant \infty$. Then, for every $s \in B^p_\sigma$,

$$||s||_p \leqslant \sup_{u \in \mathbb{R}} \left\{ \sum_{k=-\infty}^{\infty} |s(u-k)|^p \right\}^{1/p} \leqslant (1+\sigma)||s||_p.$$

From the Nikolskii's inequality we see that our assumption $s \in L^1(\mathbb{R})$ is sufficient for (12) and thus s in (3) is indeed a kernel in the sense of Definition 2.

These types of kernels arise in conjunction with window functions widely used in applications (e.g. [15], [16], [17], [18]), in Signal Analysis in particular. Unfortunately bandlimited kernels do not have compact support. Many kernels can be defined by (3), e.g.

- 1) $\lambda(u) = 1$ defines the sinc function;
- 2) $\lambda_j(u):=\cos\pi(j+1/2)u,\ j=0,1,2,\ldots$ defines the Rogosinski-type kernel (see [9]) in the form

$$r_j(t) := \frac{1}{2} \left(\operatorname{sinc}(t+j+\frac{1}{2}) + \operatorname{sinc}(t-j-\frac{1}{2}) \right)$$
 (16)

3) $\lambda_H(u) := \cos^2 \frac{\pi u}{2} = \frac{1}{2}(1 + \cos \pi u)$ defines the Hann kernel (see [12])

$$s_H(t) := \frac{1}{2} \frac{\operatorname{sinc} t}{1 - t^2}; \tag{17}$$

III. SUBORDINATION BY TYPICAL (ZYGMUND) SAMPLING OPERATORS

In [11] we introduced typical (Zygmund) sampling series $Z_w^r f$ for $f \in C(\mathbb{R})$ with kernels $z_r \in B_\pi^1$ defined via (3) using the window function

$$\lambda_{Z,r}(u) := 1 - u^{2r}, \quad r > 0.$$

We proved an estimate ([11], Th. 1)

$$||Z_w^r|| \leqslant \frac{2}{\pi} \log r + C \tag{18}$$

Consider now an even bandlimited kernel $s_r \in B^1_\pi$ defined via (3) using the window function λ_r , which has a representation

$$\lambda_r(u) := 1 - \sum_{j=r}^{\infty} c_j u^{2j}, \quad r \geqslant 1.$$
 (19)

The condition (19) is satisfied for many kernels $s \in B^1_{\pi}$.

If $\sum_{j=r}^{\infty} |c_j| \log j < \infty$ then substituting (19) in (3) and the last one into (1) gives a double series, where interchanging of the order of summation is justified. Therefore, for generalized sampling series in (1) defined by the kernel s_r one has the subordination equalities

$$S_w^r f = \sum_{j=r}^{\infty} c_j Z_w^j f \tag{20}$$

$$S_w^r f - f = \sum_{j=r}^{\infty} c_j (Z_w^j f - f).$$
 (21)

Theorem 1: Let $f \in \Lambda^p$ for $1 \leq p < \infty$, $r \in \mathbb{N}$. Then

$$||Z_w^r f - f||_p \le M_r \tau_{2r}(f; \frac{1}{w})_p.$$
 (22)

The constants M_r are independent of f and w. Moreover, if $f \in \Lambda^p \cap R_{loc}(\mathbb{R})$ for $1 \leq p < \infty$, we have

$$\lim_{w \to \infty} \|Z_w^r f - f\|_p = 0. \tag{23}$$

PROOF: We apply Proposition 1. For (9) in Proposition 1 we have for $f \in \Lambda^p$ by Proposition 3, (18) and Nikolski inequality

$$||Z_w^r f||_p \leqslant ||Z_w^r||^{1/q} ||z_r||_1^{1/p} ||f||_{\ell^p(w)} \leqslant ||Z_w^r|| ||f||_{\ell^p(w)}.$$

Now we show that (10) in Proposition 1 holds. Let $g \in B^p_{\pi w}$. For $f \in W^{2r}_p$ we have

$$||Z_w^r f - f||_p \le ||Z_w^r (f - g)||_p + ||Z_w^r g - g||_p + ||f - g||_p$$
 (24)

By Proposition 3 and (8) we have

$$||Z_{w}^{r}(f-g)||_{p} \leq ||Z_{w}^{r}||^{1/q}||z_{r}||_{1}^{1/p}||f-g||_{\ell^{p}(w)}$$

$$\leq ||Z_{w}^{r}||^{1/q}||z_{r}||_{1}^{1/p}(||f-g||_{p} + \frac{1}{w}||f'-g'||_{p}). \quad (25)$$

If $g \in B^p_{\pi w}$, then $S^{sinc}_w g = g$ i.e.

$$g(t) = \sum_{k \in \mathbb{Z}} g\left(\frac{k}{w}\right) \int_{0}^{1} \cos(\pi(wt - k)u) du.$$

Hence on the right hand side the series is uniformly convergent and after term-by-term differentiation we get also a uniformly convergent series (cf. [2], Th. 3.3). Therefore for $r \in \mathbb{N}$

$$\frac{(-1)^r}{(\pi w)^{2r}}g^{(2r)}(t) = \sum_{k \in \mathbb{Z}} g\left(\frac{t}{w}\right) \int_0^1 u^{2r} \cos(\pi(wt - k)u) du$$
(26)

Now by the definition of Z_w^r it follows

$$||Z_w^r g - g||_p = \frac{1}{(\pi w)^{2r}} ||g^{(2r)}||_p$$

$$\leq \frac{1}{(\pi w)^{2r}} (||f^{(2r)} - g^{(2r)}||_p + ||f^{(2r)}||_p). \quad (27)$$

Substituting (25) and (27) in (24) and choosing finally the function g as $g_w \in B^p_{\pi w}$ from Proposition 2 it follows

$$||Z_w^r f - f||_p \leqslant K_r \frac{1}{w^{2r}} ||f^{(2r)}||_p$$

and (10) is fullfilled. Proposition 1 yields (22). The last assertion (23) follows from (22) and (7).

Theorem 2: Let sampling operator S_w^r (w>0) be defined by the kernel (3) with $\lambda=\lambda_r$ and for some $r\in\mathbb{N}$ let

$$\lambda_r(u) := 1 - \sum_{j=r}^{\infty} c_j u^{2j}, \quad \sum_{j=r}^{\infty} |c_j| \log j \leqslant \infty.$$
 (28)

Then for $f \in \Lambda^p \ (1 \leqslant p < \infty)$

$$||S_w^r f - f||_p \le M_r \tau_{2r}(f; \frac{1}{w})_p.$$
 (29)

The constants M_r are independent of f and w. Moreover, if $f \in \Lambda^p \cap R_{loc}(\mathbb{R})$ for $1 \leq p < \infty$, we have

$$\lim_{w \to \infty} \|S_w^r f - f\|_p = 0. \tag{30}$$

PROOF: We apply Proposition 1. For (9) in Proposition 1 we have for $f \in \Lambda^p$ by (20), (18), Proposition 3 and Nikolski inequality

$$||S_w^r f||_p \le ||f||_{\ell^p(w)} \sum_{j=r}^{\infty} |c_j| \log j$$

Now we show that (10) in Proposition 1 holds. Let $g \in B^p_{\pi w}$. For $f \in W^{2r}_p$ we have

$$||S_w^r f - f||_p \le ||S_w^r (f - g)||_p + ||S_w^r g - g||_p + ||f - g||_p$$
 (31)

The subordination equality (21) gives the estimate

$$||S_w^r g - g||_p \le \sum_{j=r}^{\infty} |c_j| ||Z_w^j g - g||_p$$

Now we show that for $g\in B^p_{\pi w}$ and $s\leqslant r$ there holds the estimate $\|Z^r_wg-g\|_p\leqslant \|Z^s_wg-g\|_p$. Using (26) and the definition of Z^r_w we have

$$Z_w^j g(t) - g(t) = -(\pi w)^{-2} \Big((Z_w^{j-1} g)''(t) - g''(t) \Big)$$
 (32)

Applying ([14], Th. 6.11 and Lemma 6.6) we have $Z_w^jg\in B_{\pi w}^1\subset B_{\pi w}^p$, hence $(Z_w^jg-g)\in B_{\pi w}^p$ and we can use the Bernstein inequality for $1\leqslant p\leqslant \infty$

$$||(Z_w^{j-1}g)'' - g''||_p \leqslant (\pi w)^2 ||Z_w^{j-1}g - g||_p,$$

hence

$$||Z_w^j g - g||_p \leqslant ||Z_w^{j-1} g - g||_p,$$

and we have

$$||S_w^r g - g||_p \le ||Z_w^r g - g||_p \sum_{j=r}^{\infty} |c_j|.$$

Finally we use (27) and substitute the resulting estimate in (31). The rest of the proof is the same as for Theorem 1.

IV. EXAMPLES

Now we apply Theorem 2 for some sampling operators. Theorem 3: Let the Rogosinski-type sampling operator $R_{w,j}$ $(j=0,1,2,\ldots)$ be defined by the kernel (16). Then for $f \in \Lambda^p$ $(1 \le p < \infty)$

$$||R_{w,j}f - f||_p \leqslant M_j \tau_2(f; \frac{1}{w})_p.$$

The constants M_j are independent of f and w.

PROOF: We have for the Rogosinski-type window function

$$\lambda_j(u) = \cos \pi \left(j + \frac{1}{2}\right) u = 1 - \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\pi^{2k} (j+1/2)^{2k}}{(2k)!} u^{2k}$$

and obviously

$$\sum_{k=1}^{\infty} \frac{\pi^{2k} (j+1/2)^{2k}}{(2k)!} \log k < \infty. \quad \blacksquare$$

Theorem 4: Let the Hann sampling operator H_w be defined by the kernel (17). Then for $f \in \Lambda^p$ $(1 \le p < \infty)$

$$||H_w f - f||_p \leqslant M\tau_2(f; \frac{1}{w})_p.$$

The constant M is independent of f and w.

PROOF: We have for the Hann window function

$$\lambda_H(u) = \frac{1}{2}(1 + \cos \pi u) = 1 - \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\pi^{2k}}{2(2k)!} u^{2k}. \quad \blacksquare$$

ACKNOWLEDGMENT

This research was partially supported by the Estonian Sci. Foundation, grants 8627 and 9383, and by the Estonian Min. of Educ. and Research, project SF0140011s09.

REFERENCES

- P. L. Butzer, G. Schmeisser, and R. L. Stens, "An introduction to sampling analysis," in *Nonuniform Sampling, Theory and Practice*, F. Marvasti, Ed. New York: Kluwer, 2001, pp. 17–121.
- [2] P. L. Butzer, W. Splettster, and R. L. Stens, "The sampling theorems and linear prediction in signal analysis." *Jahresber. Deutsch. Math-Verein*, vol. 90, pp. 1–70, 1988.
- [3] R. L. Stens, "Sampling with generalized kernels," in *Sampling Theory in Fourier and Signal Analysis: Advanced Topics*, J. R. Higgins and R. L. Stens, Eds. Oxford: Clarendon Press, 1999.
- [4] P. L. Butzer, C. Bardaro, R. L. Stens, and G. Vinti, "Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals." J. Math. Anal. Appl., vol. 316, pp. 269–306, 2006.
- [5] P. Butzer, J. Higgins, and R. Stens, "Classical and approximate sampling theorems; studies in the L^p(ℝ) and the uniform norm," *Journal of Approximation Theory*, vol. 137, pp. 250–263, 2005.
- [6] P. L. Butzer and R. L. Stens, "Reconstruction of signals in $L^p(\mathbb{R})$ space by generalized sampling series based on linear combinations of
 B-splines." *Integral Transforms Spec. Funct.*, vol. 19, pp. 35–58, 2008.
- [7] P. L. Butzer, C. Bardaro, R. L. Stens, and G. Vinti, "Prediction by samples from the past with error estimates covering discontinious signals," *IEEE Transactions on Information Theory*, vol. 56, pp. 614– 633, 2010.
- [8] A. Kivinukk, "Approximation of continuous functions by Rogosinskitype sampling series," in *Modern Sampling Theory: Mathematics and Applications*, J. Benedetto and P. Ferreira, Eds. Birkhuser Verlag, 2001, pp. 229 – 244.
- [9] A. Kivinukk and G. Tamberg, "On sampling series based on some combinations of sinc functions." Proc. of the Estonian Academy of Sciences. Physics Mathematics, vol. 51, pp. 203–220, 2002.
- [10] Z. Burinska, K. Runovski, and H.-J. Schmeisser, "On the approximation by generalized sampling series in L_p -metrics." Sampling Theory in Signal and Image Processing, vol. 5, pp. 59–87, 2006.
- [11] A. Kivinukk, "Approximation by typical sampling series," in *Proc. 1999 Intern. Workshop on Sampling Theory and Applications, Loen, Norway.* Norwegian Univ. Sci. and Technology, 1999, pp. 161–166.
- [12] A. Kivinukk and G. Tamberg, "On sampling operators defined by the Hann window and some of their extensions." Sampling Theory in Signal and Image Processing, vol. 2, pp. 235–258, 2003.
- [13] B. Sendov and V. Popov, The Averaged Moduli of Smoothness. Chichester: Wiley, 1988.
- [14] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis. Oxford: Clarendon Press, 1996.
- [15] H. H. Albrecht, "A family of cosine-sum windows for high resolution measurements," in *IEEE International Conference on Acoustics, Speech* and Signal Processing, Salt Lake City, Mai 2001. Salt Lake City: IEEE, 2001, pp. 3081–3084.
- [16] R. B. Blackman and J. W. Tukey, The measurement of power spectra. New York: Wiley-VCH, 1958.
- [17] F. J. Harris, "On the use of windows for harmonic analysis." Proc. of the IEEE, vol. 66, pp. 51–83, 1978.
- [18] H. D. Meikle, A New Twist to Fourier Tansforms. Berlin: Dover, 2004.