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Abstract—The paper focuses on the perfect recovery of band-
limited signals from nonuniform samples of the signal and its
derivatives. The main motivation to address signal recovery
using nonuniform derivative sampling is a reduction of mean
sampling frequency under Nyquist rate which is a critical issue
in event-based signal processing chains with wireless link. In
particular, we introduce a set of reconstructing functions for
nonuniform derivative sampling as an extension of relevant set
of reconstructing functions derived by Linden and Abramson
for uniform derivative sampling. An example of signal recovery
using the first derivative is finally reported.

I. INTRODUCTION

Modern sensor and control systems require advanced irreg-
ular sampling algorithms to represent continuous-time signals
by a sequence of discrete-time samples taken at right time.
A special class of irregular observations is constituted by
the event-based sampling schemes. This class is characterized
by the functional relationship between sampling instants and
temporal signal behavior so the samples are captured when it
is required. Event-based sampling, known since the 50s [15]
experiences increasing interest because processing of events
defined as a significant change of a selected signal parameter
is the objective of various signal processing or monitoring and
control systems [1], [9], [15], [19], [20], [26], [27]. All the
event-based sampling schemes produce samples irregularly in
time according to temporal signal variations.

Several signal-dependent sampling criteria have been pro-
posed and investigated in recent years [15], [16], [25], [17],
[11], [27] including the algorithms based on controlling the
linear intersampling error [1], [5], [6], [11], [15], [21], integral
error [16], [18], and the energy of intersampling error [17]. The
most natural signal-dependent sampling scheme is based on
the send-on-delta principle and consists in keeping the linear
intersampling error bounded [1], [5], [6], [11], [15], [21].

The send-on-delta scheme is known in the literature also
as Lebesgue sampling in the context of control systems
theory [1], [6] and derivations from Lebesgue integral [6],
or level-crossing sampling especially in the context of signal
conversion and processing [5], [12], [20].

In [25], the send-on-delta/level-crossing sampling with
prediction as an enhanced version of the pure send-on-
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delta/level-crossing principle has been introduced. The send-
on-delta/level-crossing scheme with prediction is a sampling
algorithm that employs the prediction to approximate the
sampled signal between sampling instants.

The prediction is based on a belief that the sampled signal
will vary according to the first-order (linear) or second-
order (quadratic) approximation by the truncated Taylor series
expanded at the instant of the most recent sample. The next
sample is captured when the predicted signal value deviates
from the real signal value by an interval of confidence [25],
[23]. In particular, in the send-on-delta/level-crossing sampling
with prediction, either signal or its time-derivatives are sam-
pled and transmitted irregularly in time via communication
channel for possible processing and/or reconstruction.

The present paper deals with involving signal derivatives
to nonuniform sampling. More specifically, we examine the
problem of recovery of original signal based on non-uniform
discrete-time representation of the signal and its derivatives.

The present paper deals with involving signal derivatives
to nonuniform sampling. More specifically, we examine the
problem of recovery of original signal based on non-uniform
discrete-time representation of the signal and its derivatives.
The primary goal of adopting derivative sampling to irregular
discrete-time signal representation is a desire to reduce the
sampling rate below the Nyquist rate. Decreasing the mean
rate of data records is an issue of primary importance in
signal processing systems with wireless links since wireless
communication is a major source of energy consumption. In
the paper, we provide a procedure for perfect recovery of
bandlimited signals for non-uniform derivative sampling. The
original contribution of the paper is a formulation of a set of
reconstructing functions for non-uniform derivative sampling
as the extension of relevant set of reconstructing functions
derived by Linden and Abramson for uniform derivative sam-
pling in their classical paper on generalized sampling theorem
[14]. Finally, we illustrate the reconstruction procedure on the
example of signal recovery using the first derivative.

II. PROBLEM FORMULATION

Let us assume that a signal x(t) of finite energy is band-
limited, i.e. X(w) = 0 for w ¢ (—,Q). Suppose that the
signal x(¢) and its first (m — 1) time-derivatives are sampled
irregularly in time which results in producing a set of samples
{2O(t,), 2V (ty,), ..., 2™V (t,)} taken at the instants ,,
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n € Z. The aim of the present study is to recover the original
signal x(¢) using the given samples.

A. Recovery of signal from nonuniform samples

Recovering bandlimited signal from its samples taken at
nonuniform time instants is possible on the basis of theory of
frames and non-harmonic Fourier series. Both concepts were
introduced by Duffin and Schaeffer in [2]. The frame {g,}
generalize the idea of a basis in a Hilbert space H in the
sense that it allows representing an arbitrary element x € H
as long as there exist the frame bounds A, B > 0 such that
the following frame condition is fulfilled

+oo
0 < Allzl* < Y gno)* < Bllall* <00 (1)

n=—oo

If the set of functions {g,(¢)} is a frame or a basis, there
exists a set of coefficients ¢, which allows to represent a
function z(t) as

+o00

> ngn(t) 2

n=—oo

x(t) =

The Shannon uniform sampling theory uses the basis of
functions g, (t) = sinc(2(¢t — nT')) and samples z(nT') as
coefficients ¢,, where sinc(t) := sin(t)/¢. Frame theory allows
obtaining coefficients ¢, for frame composed of functions
gn(t) = sinc(Q(t — t,)), where t,, are sampling instants.
The set t,, is not arbitrary and must obey certain conditions:
[t, — n| < 1/4 [10] and for finite subset of ¢,, it is allowed
that |t,, —n|] = O(n™7),n — oo,y > 1 [3]. To obtain values
of coefficients ¢,,, we insert the known time instants ¢,, as ¢
(we mark them by ¢; to avoid confusion) in (2), getting

—+oo

Z Cndn (tl) (3)

n=-—0o0

z(t) =

where g, (t;) = sinc(Q(t;—t,)). This may be written in matrix
form

x = Gc “

where xT = ..., 2(t,—1),2(tn), (tns1), .. ], and [G];; =
gi(t;). The matrix G is infinite dimensional, so to apply
practical recovery algorithm a truncated matrix is used [24].
The values of ¢, can be then calculated on the basis of
computation of the pseudo-inverse matrix

c=(GTG)'aTx 5)

The recovery method stated above has been used for recov-
ery of amplitude information from time-encoded signals and
proposed for applications in neurocomputing and time-mode
signal processing systems [13].

B. Derivative sampling

The problem of reconstructing bandlimited signal from the
samples of the signal and its time derivative(s) has been
studied in the context of uniform sampling for decades [8]. The
significant benefit of including samples of time derivatives to
procedure of signal recovery is a reduction of the sampling
frequency. In particular, a possibility to recover the signal
based on knowledge of the samples of the signal and its
first time-derivative was mentioned by Shannon in one of his
milestone papers [22]. This idea was further developed by
Jagerman and Vogel [4], [7] for first derivative. The derivative
sampling theorem was generalized for arbitrary number of
derivatives by Linden [14]. Sampling of m derivatives at once
(in our notation signal itself is zero-order derivative) allows
for m-fold decrease of sampling frequency, so the sampling
period becomes 7,,, = mn/$2. The reconstruction formula [14]
is given by

+oo
x(t) = Z :L'(O)('ILTm)go(t —nTm)+ 6)
n=—oo
+ x(l)(nTm)gl (t —nTym)+
+ ...+

+ l‘(mil) (nTrn)gm—l (t - nﬂn)

with reconstruction functions

th(Q
gk(t):ﬂsmc (mt> (N

for ¥ € (0,...,m — 1). Note that gx(¢t) is a function
corresponding not to a single sample z(k7T") but to the infinite
set of samples z(®) (nT).

C. Nonuniform derivative sampling

Since reconstruction formulas (2) and (6) are both based
on convergence of Fourier series, then we can write also the
nonuniform analogue of (6)

“+o0
2(t)= Y congolt —tn)+ ®)
+c1091(t —tn)+
+ ...+

+ Cm—l,ngm—l(t - tn)

assuming that all derivatives are sampled nonuniformly, at the
same instants t,,. Using a matrix notation (4) with [GF]; ; =
gr(t; —t;) for k € (0,...,m — 1) we obtain

x=Gocg+ Gici1 +...+ G _1Cm_1 9

The vector x contains samples of z(t) taken with fre-
quency m-times lower than Nyquist frequency. For this rea-
son the formula (9) is not sufficient to obtain coefficients
{co,€1,...,Cm—1}. To make use of derivatives samples, we
differentiate r-times both sides of (8), which yields
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“+o00

2O = > congd”(t—ta)+ (10)
+erngl” (t—ta)+
+ ...+
+ Cm—l,ngr(g)_l(t - tn)
(T)(t) d i sinc” &—Zt (11
Ik atr \ k! m

In particular, for m = 0, the set of reconstructing functions
given by (11) is reduced to (7) which represents the classical
nonuniform signal recovery from based on (2) without the use
of derivative sampling. The equation (10) can be arranged for
each r € (0,...,m — 1) into system of equations, which can
be also written in block-matrix form

x(0) G(()O) G(lo) G(O) Co
%<1 Gél) Ggl) G(l) c1
x(m=1) Gém—l) G(lm—l) G(m 1) Crm—1
(12)

Solving this system gives coefficients cg,cy,...,c,,—; for
reconstruction with (8). Therefore computational complexity
of the reconstruction procedure corresponds to classic matrix
inversion complexity O(n?) and it is dependent on the number
of samples used. Summing up, the proposed procedure of
signal recovery is based on computation of the coefficients
Co,C1,- .-, Cym_1 to the set of reconstructing functions defined
by (7). The number of reconstructing functions depends on the
number of derivatives used for signal recovery.

III. SIMULATIONS

As an example illustrating the procedure of signal recovery
based on nonuniform derivative sampling, we present a recon-
struction from samples of the signal and its first derivative, i.e.
for m = 2. In this case we have the following reconstructing
functions on the basis of (11)

4sin?(Qt/2)
9 (t) = o2z
4sin?(Qt/2
(1) 2 (=2 + 2cos(2t) + Qt sin(Qt))
90 (f) = 0243
1 2 (—1 + cos(2t) +
g () = 052

The coefficients cg,cy, are computed on the basis of the
following reconstruction equation:

x| T lg® g e

(0)

Ot sin(Qt))
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Fig. 1. Reconstruction functions g(()o), g§0>, g((,l), ggl), when signal is

recovered from the samples of =(¢) and its derivative = (t)
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Fig. 2. Reconstruction matrix, composed of matrices G(O) G<0) G(l)

G( ) corresponding to respective reconstructon functions g(() ), ggo), ggl),

g(l)

The signal z(t) used for exemplified recovery was generated
using Shannon-Whittaker reconstruction formula

40 .
2(t) = Z . sin(m(t —n))

w(t —n) (13)

n=1
where z1,...,2409 were selected as independent realizations
of random variable with normal distribution. Thus, the signal
2(t) is bandlimited to Q = 7. The signal derivative 2/ (t) was
computed using differentiated sinc(-) function. The signal x(t)
has been sampled using send-on-delta sampling scheme with
linear prediction [23], [25], resulting in 25 samples of the sig-
nal and 25 samples of its derivative. The reconstruction block-
matrix G is depicted in the Fig. 2, where red corresponds to
higher, and blue to the lower values. The number of each
type of samples required for reconstruction is 20 so signal is
slightly oversampled. As stated in Introduction, in the send-on-
delta scheme with linear prediction, the sampling operation is
triggered when the predicted signal based on linear prediction
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deviates from the real signal value by an interval of confidence
[23]. The original and the reconstructed signal are depicted
in the Fig. 3. The absolute linear error of reconstruction is
presented in the Fig. 4.
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Fig. 3. Original bandlimited signal z(¢) and its reconstruction Z(¢) from the
nonuniform samples of z(t) and its first derivative z’(t).
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Fig. 4. Error of the reconstruction of the signal from the nonuniform samples
of x(t) and its derivative =’ (). The lowest values occure at sampling instants
tn (Compare Fig. 3).

IV. CONCLUSIONS

The paper focuses on the perfect reconstruction of band-
limited signal from the nonuniformly spaced samples of the
signal and its derivatives. The principal benefit of signal re-
covery using nonuniform derivative sampling is a reduction of
mean sampling frequency under Nyquist rate which is a critical
issue in signal processing chains with wireless link based on
event-based sampling. The computational complexity of the
proposed recovery procedure is connected with the matrix

inversion needed to calculate the coefficients cg,c1,...,Cpm_1.
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