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Abstract—We provide an overview of recent progress regarding
the role of sampling in the study of signals that are in the image of
a bandpass or multiband frequency limiting operation and have
most of their energies concentrated in a given time interval. We
finish considering a means to approximate essentially time-limited
bandpass signals. In this case we present a new phase-locking
metric that arises in the study of EEG signals.

I. INTRODUCTION

We discuss relationships between time and band limiting
and sampling, leading also to numerical computation of es-
sentially time-limited multiband and bandpass signals. As an
application we propose a method to analyze phase synchrony
of bandpass projections of signals, illustrating a particular case
of electroencephalographic (EEG) signals. In this introduction
we briefly review basic elements of the theory of time and band
limiting. In Section II we discuss connections between sam-
pling and time and band limiting. In Section III we present a
method to construct time- and multiband-limited signals from
eigenfunctions for time and band limiting to separate bands
and a numerical technique that takes advantage of sampling.
In Section IV we provide a method to approximate essentially
time-limited bandpass signals. We use this approach in Section
V to provide a new method to study phase differences of
bandpass projections of signals. The method is illustrated in
the context of study of EEG signals. Relatively constant phase
lag among two EEG channels can indicate recruitment of the
corresponding cortical regions in distributed cognition.

A. Time and band limiting

Set (Qr)(f)(t) = 1j_pz(t) f(t) where 1g denotes the
function equal to one on S C R and zero outside S. Let

o~ ~

Q = Q1. Also let (Py)(f)(t) = (1sf)¥(t) where f(§) =
J75 f(t) e dt. We write P = Pi_q 2.2 and P = Py.
The Paley—Wiener space PWy, is of the image of L?(R) under
the orthogonal projection Ps;. We write PW¢, instead when
Y =[-Q/2,9Q/2] and simply PW when © = 1. For compact
3, the operator PsQp is compact and its trace is equal to
2T|X| where |X| denotes the Lebesgue measure of ¥ C R. It
is also self adjoint on PWy, while P (s P is self adjoint on
L?(R). Since functions in PWy, are real analytic, Px.Qgs has
no unit eigenfunctions and the discrete spectrum of PxQr is
contained in [0, 1).
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B. Prolate functions and their properties

The operator P,/.() commutes with a certain self-adjoint
second-order differential operators whose eigenfunctions, and
hence those of P.,.Q, are the prolate spheroidal wave func-
tions, which form a complete orthogonal basis for PW_/ .
They are also eigenfunctions of the integral operator

1

(Fcf)(t):/ et f(s)ds = Qf(—ct/2m). (1)

-1

The eigenvalues P, /,Q are non degenerate. Denote by
Xo(e) > Ai(e) > ... the nth eigenvalue of P,/.Q and
oy, the corresponding prolate eigenfunction. That ¢f, is an
eigenfunction of (1) and other basic properties imply that

i'IL

DC/?T(lO’(I’/;, = \/)\7

where D, is the unitary dilation (D,f)(t) = +/af(at),
a > 0. When L?(R)-normalized, the prolates {¢¢} form an
orthonormal basis for PW, /. as well as a complete, orthog-
onal set in L?[—1,1] with \,(c) = fil |©¢|%. As such, any
f € PW, /. can be expanded in the form f = > o Qn P
with || f[|72 () = X o, and f_ll |f1? = > A\.a?. The prolates
are real valued and ¢ is even (odd) if n is even (odd).
Further properties of prolates and justification of the facts just
mentioned, which were established in the Bell Labs papers,
especially [1], [2], can be found in [3].

Qyy, (2)

C. The 2QT theorem

Suppose that ¥ is a union of M pairwise disjoint frequency
intervals of unit length so that the total time—bandwidth prod-
uct corresponding to PsQr is 2MT. Denote by N (2MT, «)
the number of eigenvalues of Py@Qr larger than «. The
following is a special case of a version of the “2Q27™ theorem
proved by Landau and Widom in [4].

Theorem 1 (Landau—Widom, 1980): As T — oo the num-
ber of eigenvalues of Ps@Qr exceeding « € (0, 1) satisfies

M «
N(2MT,a) = 2M T+ log 2T log ( m) +o(log 2MT) .

532



Proceedings of the 10th International Conference on Sampling Theory and Applications

II. SAMPLING AND TIME AND BAND LIMITING
Walter and Shen [5] and Khare and George [6] observed

n=0 k=—oc0

where ,, are eigenfunctions of PQr. Oscillatory behavior of
the prolates near the endpoints of [T, T] prohibits an estimate
k> 02 (k) < C(T)(1 — \,). However, in [7] the estimate

>

k[>T (1+log™ (T))

er (k) < C(1 =), 3)

was proved for any v > 1. It was conjectured in [7] that the
log factor in the sum index is not necessary. The following
consequence of (3) regarding approximation of Qpf from
samples of f near [T, T] was also established in [7].

Theorem 2: Let f € span {¢, }2_, with ¢,, the nth eigen-
function of PQr. Define ¢l = 2 kl<m(r) n(k)sine (t — k)
with M(T) as in (3). Then

N N
1Qr(f = > (fromdemll < CIFIDY S An(1=An)
n=0 n=0

A method to obtain accurate numerical estimates of integer
samples of prolates is outlined in Hogan et al., [7].

III. TIME- AND MULTIBAND-LIMITED SIGNALS

This section reviews techniques underlying numerical com-
putation of certain time- and multiband-limited signals. We
start with a method to build eigenfunctions for the case X is a
finite union of intervals from appropriately modulated prolates.

A. Eigenfunctions for unions

If ¥ is a finite union of pairwise dizsljoint intervals
I,..., Iy then we can denote Py = w1 1. Unlike
PQr, the operator Ps@Qr does not commute with a finite
order differential operator with polynomial coefficients when
3. is a union of two or more intervals. This important fact,
established by Morrison in [8], bars us from using power series
methods to compute eigenfunctions.

The following results were established in [9] in a more
general setting. If J is a frequency interval of unit length
then the orthogonal projection onto PW ;, the Paley—Wiener
subspace of L?(R) of functions frequency supported in .J, has
the form M,,,PM_,,, where, as before, P = P_y/31/9
and (M, f)(t) = e* f(t) with my, the midpoint of J.
Suppose that one has M pairwise disjoint frequency intervals
Ji,...,Jp each of unit length and set X = UgJg. Set
my = my,. Since the J-prolates ! = M,,, p,, with ¢, the
corresponding eigenfunction of PQp, form a complete family
for PW ;, any function in PWy has an orthogonal decomposi-
tion f = 2114\:/1:1 >or ol fs My, 00) My, @n. Consider now the
problem of finding an eigenvalue—eigenfunction pair (\, ¢)
for Px@r. Expanding v in terms of the modulated prolates
M, ¢ and applying PsQr to these, one sees that one must
identify the coefficients T%:f = (Q7 M,,, ©n, My, om). Note

that T4k = T84 that is, if T* is the matrix with entries T¥:¢

then T'“* = T'*. The eigenvalue—eigenfunction pairs (), 1)
for Px Q7 are produced as follows.

Proposition 3: Suppose that Ji,...,Jy are pairwise dis-
joint unit intervals with union ¥ = UM Ji. Let A denote
the diagonal matrix with nth diagonal entry A\, (PQr) and let
I'*¢ be the matrix with entries 7*;¢ = (Qr My —my©n, ©m)s
k < ¢. Then any eigenvector—eigenvalue pair ¢» and A for
PsQr can be expressed as ) = 212/121 ZZOZO ak My, on
where the vectors a; = {af} together form a discrete
eigenvector for the block matrix eigenvalue problem

f\12 f\lM

o A - ag

Qs (FIQ)T A F23 . Qo
A . =

o (FlM)T A N

In order to turn the method into a means to compute
eigenvalues and eigenfunctions of Py () numerically, one
needs to estimate the coefficients

T
it = [ e, 1) o (0 d
=T

and to justify truncating the matrices A and I'**. The matrix
truncations are justified by Theorem 1.
The corresponding I'-matrix entries can be expressed as

(QT Mo, 0y My 0m) =D > on(k)om (O A(T; 1, T)e;
k 4

T

AT I, ) = / e?mimi—mat gine (t — k)sine (t — £) dt .
-T

The inner products are computed using the following, see [9].

Lemma 4: As a bilinear form acting on the pair of se-
quences {¢n(k)}, {pm ()}, the matrix A(T; I, J)y, coincides
with i"t™y/ X, A, sine (2T (my — my) + k — £).

An eigenfunction ¢ of Px@Qr will be called a time- and
multiband-limiting eigenfunction (TMBLE). If ¢ is a TMBLE
with eigenvalue A > 1/2 then ¢ should be, at least nearly,
in the span of those eigenfunctions ¢, where ¥ = UI,
corresponding to the eigenvalues of P;Qr larger than 1/2,
hence, of eigenfunctions !, corresponding to n < 27". In this
case, ! can be approximated accurately on [T, T] by sinc
interpolating its samples o, (k) where |k| < M(T) above.

B. Numerical estimation of TMBLEs

Accurate numerical estimation of the TMBLEs is obtained
via estimation of the entries of suitable truncations of the I'
matrices and eigenvectors of the corresponding truncation of
the eigenproblem in Proposition 3. Details are given in [9].
Figure 1 illustrates the case with three frequency intervals.The
corresponding eigenfunctions are plotted in Fig. 2.

IV. TIME- AND BANDPASS-LIMITED SIGNALS

Given 0 < ¢’ < c denote by PW{, . the orthogonal
complement of PW./,, inside PW_/ , that is, the closed
subspace of L?(R) of functions whose Fourier transforms f(f )
are supported in ¢’/ < || < ¢/, and by P7_ the orthogonal

projection onto PW7, .. The eigenfunctions of the operator
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Fig. 1. Matrix in Proposition 3 for T =2, I = [-1/2,1/2], J = [2,3],
and K = [5,6]. Intensity plot of the real part of the matrix in Proposition
3. Each I'*¥ term is truncated to size 10 X 10. On the right is a plot of the
moduli of the eigenvalues of the same matrix.

Fig. 2. TMBLEs for T =2, I = [-1/2,1/2], J = [2,3] and K = [5,6].
Plotted are the TMBLMS corresponding to n = 0, 1,2, 3,4, 5 respectively
for three frequency bands. Real parts solid, imaginary parts dashed.

P7.Q corresponding to time truncation of a function in
L?(R) to a finite interval—[—1, 1] in this work—followed by
frequency limiting to frequencies |w| € [¢/, ¢] /7 will be called
bandpass prolates here. Numerical approximation of the most
time concentrated bandpass limited signals (called bandpass
prolates here) was studied recently by SenGupta et al., [10]
by expressing the kernel of the bandpass limiting operator in
terms of Legendre polynomials, then identifying the bandpass
prolates through their Legendre coefficients. Alternatively,
Proposition 5 proved in [11], produces the coefficients of the
bandpass prolates, expressed as superpositions of full-band
prolates, from partial inner products of full-band prolates. As
explained below, these partial inner products can be computed
directly from pointwise values of ¢, and <p$: where, as before,
¢y, 18 the nth eigenfunction of P/, Q.

Denote by R = R(c,c) the matrix with entries R;, =

k=i c/e
\/ﬁ —c' /e
a consequence of the parity properties of the f,. Let A = A(c)
be the diagonal matrix with nth diagonal entry A, (c).

Proposition 5: If 1 =3 a5, € PW, /. then

PI.Qvb =) oxh (@Z_ZRjk¢§)~
k J

©5.(€) ¢5(§) d€. The matrix R is real symmetric,

In particular, if ¢ = > a, ¢ is an eigenfunction of PJ_.Q)

with eigenvalue A then, with o = {a,, }52,,

Ap = Anan — > Apog Rop de. o= (I — R)Aa.
k

The discrete eigenvectors ¢ of the matrix (I — R)A thus give
rise to eigenfunctions of P7 Q) and the eigenvalue A measures
the concentration of ¢ in [—1, 1] just as in the case of standard
prolates. The proof uses the identities (1) and (2).

The partial inner products can be calculated by virtue of the
prolate differential equation and integration by parts. If n # m
then, with x,, asin (??) and —1 <a <b <1,

b

a

b
(tn=xm) [ on®pm(t)t = [(E-1(ehpm—cinon) 0

Approximate bandpass prolates are obtained from finite size
truncations of the eigenproblem in Proposition 5, see [11].
Khare [12] also considered the problem of numerical evalua-
tion of bandpass prolates, focusing instead on the role of the
interpolating function (sinc multiplied by a suitably dilated
cosine) and establishing that the bandpass prolate samples
form a discrete eigenvector of the matrix of partial integrals
on [—1,1] of shifts of the interpolating kernel, cf. also Hogan
et al., [7]. Khare did not investigate dependence on ¢'/c.

V. PHASE SYNCHRONY AND AN APPLICATION TO EEG

We discuss briefly an application of bandpass prolates to
study phase synchrony—nearly constant average instantaneous
phase difference—particularly of EEG signals. It is believed
that communication between different regions of neural cortex
in attention focusing tasks is manifest in phase synchrony
of neural firing patterns, e.g., [13], [14], particularly in the
gamma band, e.g., [15]. Measuring band specific synchrony
between EEG channels requires (i) a means to associate in-
stantaneous phase to a given frequency band and (ii) a method
to measure temporal phase locking between a pair of signals
in a given band by averaging instantaneous phase difference
for enough oscillations that average phase difference makes
sense—say three to five—but not so many that synchronous
epochs are indistinguishable from asynchronous ones.

Proposed methods include filtered analytic signals and con-
volutions with modulated Gaussians [16], [17], and empirical
mode decomposition methods [18], [19] among others. In
each case, the instantaneous phase is defined as the log
of the complex valued signal divided by its modulus. The
instantaneous phase difference of two such signals is the log
of the product of the first unimodular signal and the conjugate
of the second. To quantify phase locking of two signals one
takes a time average of the instantaneous phase difference over
a period that amounts to several oscillations.

In the case of analytic extensions of signals filtered over a
short duration, aliasing is a concern. In the case of convolution
with modulated Gaussians, insufficiently many degrees of free-
dom are being employed. The empirical mode decomposition
provides a data- and algorithmic-driven definition of phase.
However, it can be impossible to physical from algorithmic
factors underlying the measured phase.
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Fig. 3. EEG channel data 1/8 second record of two concurrent EEG channel
measurements, digitally sampled at 1024 samples per second.

Fig. 4. Approximate ~y projections. Projections of channel measurements
onto the span of the six top eigenvectors of time-limiting to 1/8 second and
bandpass limiting to 24-40 Hz.

We consider here a new phase-locking metric computed
through the following steps. Step I: define the duration and
frequency band for which synchrony is to be measured. Step
2: define the projection onto the span of the bandpass prolates
whose eigenvalues are close to one or, at least, not much
smaller than one half. Step 3: compute the analytic signal
for this projection, and divide by its amplitude to get its
unimodular factor. Step 4: For a pair of such signals, multiply
the unimodular part of one by the conjugate of that of the other,
integrate over the given duration, and compute the modulus.
This is the phase locking value (PLV).

We implemented this algorithm as follows to produce Fig. 5.
To analyze the gamma band of EEG signals, we chose the
frequency range from 24 to 40 Hz. In order to compute the
PLV over 3 to 5 oscillations of signals in this range, we took
the duration of interest to be 1/8 second. The time bandwidth
product in this case is 2(40 — 24)/8 = 4. The corresponding
time- and bandpass-limiting operator has six eigenvalues “not
much smaller than 1/2.” We successively chose 1/8 second
blocks of the EEG channels and computed the projections onto
the span of the first six eigenfunctions. We then computed the
analytic signal using the matlab builtin hilbert. A PLV
was computed for each successive 1/8-second segment of the
two EEG channels.

Fig. 5 shows PLVs of projections of 1/8-seconds of the two
EEG channels onto the space generated by the six eigenfunc-
tions of time limiting to 1/8-second duration and bandpass
limiting to 24-40 Hz most concentrated to the given duration.
The PLVs were computed for 1/8-second duration. In the data
presented, a visual stimulus was shown to the subject after a
half second. An initial interval of synchrony then presumably
reflects response of the visual cortex. The subsequent interval
of synchrony after “t = 0” presumably then corresponds to the
subject maintaining a mental representation of the stimulus.
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