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Abstract—The goal of this manuscript (and associated talk)
is not to present any recent experimental results from my
laboratory. Rather, the purpose is to elucidate why I believe that
calibration is one of the few remaining significant challenges in
the struggle to create a wide range of practical computational
sensing and compressive sensing (CS) systems. Toward this end, I
briefly describe the fundamental and implementation difficulties
associated with calibration as well as the existing calibration
approaches and their associated limitations before sketching the
theoretical question that must be addressed in order to solve the
calibration challenge.

I. INTRODUCTION

Computational sensing is the general term for a sensing
approach in which estimation of the input signal x proceeds
from a set of measurements y that result from the action of
a linear measurement operator H (including the possibility of
potential noise corruption). The specific form of the measure-
ments depends on the physical nature of the system and the
noise. For example y = Hx+n is the appropriate form for an
optical system with post-measurement additive noise n, while
y = H(x + n) is the appropriate form for an RF system with
pre-measurement additive noise (such as that which arises at
the input to the first-stage amplifier).

Regardless of the specific form, for traditional isomorphic
sensor systems operating with impulse-like sampling, the
measurement operator (matrix) H is the identity matrix I.
Computational sensing then generalizes this to consider sensor
systems that implement measurement matrices H that have
non-zero off-diagonal elements. In this manner, the measure-
ments y become multiplexed and estimation of x becomes a
non-trivial inverse problem. In this picture, compressive sens-
ing can then be described as a subset of computational sensing
where the sensing matrix H not only has off-diagonal ele-
ments, but is also rectangular with fewer rows than columns.
Thus, the number of acquired measurements in y is less than
the number of native signal elements in x.

A. The Importance of Calibration

Solution of the inverse problem—that is, estimation of the
input signal x from the measurements y requires knowledge
of the measurement matrix H. While the measurement system
will have been designed to implement a specific measurement
matrix Hyge, experimental reality dictates that the implemented
matrix Hiy, will deviate from the design to some extent. An
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Fig. 1. The designed (top) and as-implemented (bottom) measurement ma-
trices for an experimental compressive tracking system [1]. The implemented
version of the matrix is an estimate created via a calibration process.

example of the possible deviation between Hgyes and Hiy,, for
an experimental system is shown in Fig. 1. For reasons out-
lined below, high-quality recovery of x is frequently sensitive
to these variations. Determining the actual form of Hiy, is
then the role of calibration.

The sensitivity of system performance with respect to small
deviations between Hges and Hiyp can be understood by con-
sidering the multiplex nature of the measurement matrix. As
mentioned above, the distinguishing feature of computational
and compressive sensing approaches is that their measurement
matrices contain non-zero off-diagonal elements. As a result,
multiple signal elements are multiplexed together in each of
the measurements. In cases where the input signal is dense
in the native basis, this has the effect of encoding information
about the input signal x into the variations of y about its mean.

This mean value (or baseline) frequently utilizes a signif-
icant fraction of the available system dynamic range, limit-
ing the dynamic range available for the variations—where
the information about x is encoded. An example is shown
schematically in Fig. 2. This issue is analogous to the interfero-
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Fig. 2. An example of the multiplexing baseline. (Left) Three phantoms of
size 32 x 32 composed of superposed partially-transparent ellipses. The mean
value of the three phantoms is the same. (Right) Plots of the measurements
produced by the phantoms when sampled with the measurement matrix
in Fig. 1 (bottom). Information regarding the structure of the phantoms
undergoes dynamic range compression and is encoded in the variations about
the measurement mean.

metric baseline problem that arises in interferometric systems
and is the primary manifestation of the so-called multiplex
disadvantage.

It is true that the effect is mitigated somewhat in systems
which are sparse in the native basis. However, practical situa-
tions that are natively sparse are rare (hence the need for the
sparsifying transform in the majority of compressive sensing
implementations).

The net effect of the dynamic range compression that results
from the multiplex measurement that converts x into y is that
accurate reconstruction becomes more sensitive to the specific
form of H that encoded the measurements—thus driving the
preference for Hjy,, (which is determined via calibration) over
Hges (which is known from the intended system design).

B. Difficulties of Direct Calibration

The most direct calibration approach is what we might
term point-by-point, and is effectively a Green’s function
(shift-variant impulse response) approach. The experimenter
sequentially energizes each of the individual signal elements
with unit amplitude. For each, the system response is recorded
and then placed sequentially as the columns of a matrix. Once
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every signal element has been probed in this manner and the
results integrated into the matrix, the result is an estimate of
true measurement matrix Hipyp.

Although the point-by-point calibration approach is ad-
mirably direct, there are a number of potential difficulties that
limit its practicality:

1) Signal response too weak: Energizing a single signal
element at a time may produce a system response that
is swamped by noise. Here we directly encounter the
fact that calibration is itself a measurement process.
Specifically, direct calibration estimates the measure-
ment matrix Hjyp via a traditional isomorphic approach
where the estimate of each column of Hjy,, is taken
as the measured system response for the corresponding
single-element excitation. Any measurement noise is
directly imposed on the estimate and may be non-
negligible.

Too many signal elements: As computational and com-
pressive sensing is applied to broader ranges of systems,
the dimensionality (number of native signal elements)
continues to grow. In the most advanced systems, the
number of signal elements is of such a size that direct
calibration is no longer practical—the time required is
either beyond the patience of the experimentalist, or is
on a timescale that is comparable with the timescales
over which the measurement matrix Hjy, varies (e.g.
via thermal drift). For example, a compressive spectral
imaging system under construction in my laboratory [2]
has 8.4 x 10° native signal elements. Making the
(optimistic) assumption that the apparatus will allow
direct calibration at a rate of 10 Hz, we see that direct
calibration would complete in just under 10 days of
continual operation!

Lack of desired control: The direct approach requires
the ability to isolate single signal elements and to control
their amplitude. It is frequently the case that the experi-
mentalist does not have a source that provides this level
of control. For example, in a computational spectro-
scopic application, a tunable, narrowband spectral source
may not be available. Instead, the experimenter may
have access to a discrete set of spectral sources, each
with a unique spectral profile that is a linear combination
of the individual spectral channels.

2)

~
~

3)

II. EXISTING NON-DIRECT METHODS AND THEIR
LIMITATIONS

The realization (mentioned above) that calibration is it-
self a measurement process potentially provides the key to
overcoming the pitfalls inherent in direct calibration. Direct
calibration represents a traditional, isomorphic measurement
approach to estimating the measurement matrix Hjyp. That
is, if we imagine lexicographically reordering the elements of
H;,, into a vector Hjpp vec, the calibration process utilizes a
measurement matrix ®., to capture the calibration measure-
ments. For an optical system with post-measurement additive
noise, this would have the form y = ® ¢y Hinp vec +n, with the
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obvious extensions to other measurement models. For direct
calibration, ®., is the identity matrix I.

As with the original measurement problem, however, we
can apply computational or compressive sensing ideas to
the calibration process and consider more general forms of
®.,. There are a number of existing calibration approaches
that make this generalizing step. The following subsections
describe these approaches, their benefits with respect to direct
calibration, and their limitations.

A. Multiplexed Calibration

Multiplexed calibration simultaneously energizes multiple
signal elements for each measurement in the calibration pro-
cess, resulting in a ®., that contains non-zero off-diagonal
elements [3]-[5]. Estimation of Hjpp vec then proceeds through
the solution of an inverse problem. If the column rank of the
resulting ®, is equal to the number of native signal elements,
then traditional algorithms can be brought to bear to yield
the estimate. If the column rank is smaller than the number
of native signal elements, compressive sensing techniques are
more appropriate.

The plausibility of compressive methods for determining
Hinpvec can be understood by examining the structure of
measurement matrices such as Fig. 1 (bottom) and noting the
large degree of structure present. Obviously, this structure is
a form of redundancy that indicates that H is fundamentally
a lower-dimensional object than the native number of matrix
elements would suggest. Note that this argument would not
hold for random measurement matrices (although structure im-
posed as a result of implementation deviations would provide
some reduction in the dimensionality)—a severe downside to
random measurement in extremely high-dimensional systems.

1) Advantages:

o Multiplex calibration combines signal elements in every
measurement. For systems dominated by additive noise,
this reduces the impact of the noise, increasing the
measurement SNR.

Compressive multiplexed calibration—where the column
rank of ®., is less than the number of native signal
elements—reduces the number of measurement acquisi-
tions and hence the required calibration time. This may
prove helpful in situations where direct calibration is
unfeasible as a result of the number of signal elements.
2) Drawbacks:

o Multiplex-based improvement in measurement SNR does
not occur in systems that are Poisson (shot) noise limited.
The mean SNR of such measurements remains constant
upon multiplexing.

Estimation via solution of the inverse problem results in
transform noise—The total noise in the measurements is
redistributed among the estimated signal elements in ways
that can radically modify the noise statistics. For example
in Poisson noise limited systems, noise is preferentially
redistributed from strong to weak areas of the signal.
This produces sub-Poisson noise statistics in the strong
signal areas and super-Poisson statistics in the weak
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signal areas. Transform noise also frequently introduces
correlations between the noise present at different signal
elements, creating the appearance of structure when none
is truly present. This redistribution results in errors in
the estimated Hipp,vec that can potentially impact system
performance.

B. Matrix Completion

A closely-related approach applies the techniques of ma-
trix completion [6]-[8] to the problem. In this approach,
assumptions regarding the low-rank nature of the measurement
matrix Hiyp allow its full structure to be estimated given
knowledge of only a subset of its entries. In a recent paper,
Vetterli et al. explore the use of matrix completion methods to
the calibration problem in ultrasound imaging [9] and obtain
promising results.

1) Advantages:

o The method is well-matched to the central task at hand—
estimating a low-rank (structured) matrix from a set of
possibly incomplete calibration measurements. In some
cases this would allow the experimenter to achieve an
accurate estimation of Hiy, from a reduced number of
calibration measurements and hence shorten the required
calibration time.

2) Drawbacks:

o Matrix completion is generally posed in the context of

missing entries that are distributed randomly throughout
the matrix (see [9] for an example). This is suitable
for systems where the output state of the system must
be sequentially acquired in order to determine the full
system response to a given calibration input. For systems
where the output measurements are acquired in parallel,
however, skipping a calibration step (to shorten the
calibration time) would result in missing entries that are
not arranged randomly throughout Hjy,p,, but rather are
organized in columns, and existing algorithms perform
poorly in this situation. Performing matrix completion
after a basis change to redistribute the missing entries
may possibly restore performance, but I am not aware of
any work in that area.
In their current form, matrix completion methods assume
elements of the matrix are known in the native basis—
implying single element excitation. This suffers from the
same potential SNR issues as direct calibration. The pre-
viously mentioned idea of performing matrix completion
after a basis change, should such an approach prove
viable, would allow (require) multiplexed excitation. This
would increase measurement SNR for cases which are
limited by additive noise.

C. Parameterized Forward Model

The final (and most common) method of calibration is to
create a parameterized forward model. In essence, it seeks to
estimate Hj,, through the creation of a more sophisticated
H . The system model is extended to include possible errors
that could arise during implementation and the magnitude of
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these errors are incorporated as adjustable parameters. Cali-
brating such a system is then a matter of determining certain
experiments (excitation patterns) which reveal the appropriate
magnitudes for these parameters.

1) Advantages:

o A well-developed parameterized forward model is ex-
tremely powerful. It incorporates a significant amount of
prior knowledge regarding the intended structure of H e
as well as the physics of the likely effects that transform
Hges into Hjpp. The resulting number of parameters
captures the underlying dimensionality of Hj,, with
admirable efficiency.

2) Drawbacks:

o The parameterized forward model approach trades cali-
bration acquisition time for model development time. The
net benefit of this trade-off (if any) depends on the skill
and insight of the person developing the model.

e Model mismatch is a serious concern; the model only
incorporates terms that are explicitly included. Deviations
between Hgyes and Hjy,, that arise from implementation
errors that are not included in the model will not be
captured during the calibration process.

o In advanced, high-dimensional systems, the number of
necessary parameters can proliferate quickly (in cor-
respondence with the increasing dimensionality of the
underlying measurement structure of the instrument). The
resulting models can become unwieldy and design of
experiments to isolate the values of individual parameters
may become difficult or impossible.

IIT. WHAT 1S NEEDED

Although there are a number of non-direct calibration
methods now in use, each has its own unique balance of
advantages and drawbacks and none of the methods is ideal. In
this section, I attempt to describe the properties that an ideal
calibration approach would have and the theoretical questions
that must be addressed in order to develop such an approach.

Over the past several years, there has been an evolution
in the field of compressive sensing that emphasizes a move
from random to designed sensing matrices. The various design
strategies incorporate prior information regarding the statistical
distributions of likely input signals, the nature of the sensing
task, and the reconstruction/estimation algorithms that will
be brought to bear. This design is then performed subject
to the constraints of both physics and system architecture.
The ideal calibration framework would provide a similar
level of design by identifying the sequence of calibration
measurements to be made subject to a variety of priors and
constraints. Fundamental questions related to this goal include:

« What is the appropriate mathematical framework for the
design of calibration sequences? Is there a mathematical
reason to prefer the matrix, Hiyp (matrix completion)
or vector, Hiypvec (computational/compressive sensing)
form to the problem?
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o Can constraints on the available input signals be incor-
porated in the design process? What if only a fixed set
of inputs are possible?

o The experimenter will have general knowledge regarding
the approximate form of Hiy, (via knowledge of Hes).
How can this prior knowledge be incorporated into the
design process?

e Clearly not all errors in estimating H;y,, will be equiv-
alent. The effect of specific errors is likely to depend
on the ultimate sensing task of the system. How can
prior information regarding this task be incorporated into
the design of the calibration sequence? How can prior
information regarding the likely input signals (in the
course of the sensor task, not calibration) be incorporated
into the design of the calibration sequence?

e Can the framework be made adaptive? Can the results
of early stages in the calibration sequence influence the
design of subsequent calibration measurements?

o Are there fundamental limits or guarantees that can be
stated about designed calibration?

IV. CONCLUSION

Calibration is currently an open challenge with regards to
developing advanced compressive and computational sensing
systems. The fact that calibration is itself a measurement
process provides a key opening through which to attack this
problem. It is my hope that the rough ideas presented here can
spark an engagement between the theoretical and experimental
communities on this crucial issue.
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