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Abstract—We study the reconstruction of bandlimited fields
from samples taken at unknown but statistically distributed sam-
pling locations. The setup is motivated by distributed sampling
where precise knowledge of sensor locations can be difficult.

Periodic one-dimensional bandlimited fields are considered
for sampling. Perfect samples of the field at independent and
identically distributed locations are obtained. The statistical
realization of sampling locations is not known. First, it is shown
that a bandlimited field cannot be uniquely determined with
samples taken at statistically distributed but unknown locations,
even if the number of samples is infinite. Next, it is assumed
that the order of sample locations is known. In this case,
using insights from order-statistics, an estimate for the field
with useful asymptotic properties is designed. Distortion (mean-
squared error) and central-limit are established for this estimate.

I. INTRODUCTION

In the smart-dust paradigm [1], consider a distributed field
sampling problem where sensors are deployed without precise
control on the sensor-locations. One method for distributed
field sampling is to learn the location of these individual
sensors, and then reduce field acquisition to the well-studied
non-uniform sampling problem [2]. However, localization of
individual sensors in a wireless sensor network can be dif-
ficult [3]. In light of these issues, the reconstruction of a
physical field from samples taken at unknown but statistically
distributed locations is studied in this work.

Assuming that the field has a finite support, sensors will
have to be deployed in the finite region where the field is non-
zero. The smoothness of the physical field can be modeled
by bandlimitedness. In this work, it will be assumed that
the field is spatially periodic and bandlimited. Only one-
dimensional fields will be considered. The lack of control in
sensor deployment is modeled by a uniform-distribution on
the sensor or sampling-locations. It is assumed that sensors
are deployed (or scattered) independent of each other. Thus,
perfect samples of the field at independent and identically
distributed (i.i.d.) but also unknown locations are obtained by
the sampling method outlined above. From these samples the
field has to be estimated. This work focuses on a consistent
estimate, that is, an estimate which converges to the true
underlying field when the number of samples is infinite.

This work has been supported by grant no. P09IRCC039, IRCC, IIT
Bombay.

The key results shown in this work are as follows:
1) It will be shown that a bandlimited field cannot be

uniquely determined with perfect samples obtained at
statistically distributed locations, even if the number of
samples is infinite.

2) If the order of sample locations is known, then using
insights from classical order-statistics, a consistent esti-
mate for the spatial field is presented. Distortion (aver-
age mean-squared error) and a central-limit type weak
convergence result are established for this estimate.

Prior art: Recovery of discrete-time bandlimited signals from
samples taken at unknown locations was first studied by
Marziliano and Vetterli [4]. Recovery of a bandlimited signal
from a finite number of ordered nonuniform samples at un-
known sampling locations has been studied by Browning [5].
Estimation of periodic bandlimited signals in the presence of
random sampling location under two models has been studied
by Nordio et al. [6]. Their first model studies reconstruction
of bandlimited signal affected by noise at random but known
locations. Their second model studies estimation of bandlim-
ited signal from noisy samples on a location set obtained by
random perturbation of equi-spaced deterministic grid.

In contrast, this work presents the estimation of a bandlim-
ited field from i.i.d. distributed but unknown samples in an
asymptotic setting (where the number of samples increases to
infinity). Asymptotic consistency (convergence in probability),
mean-squared error bounds, and central-limit type weak law
are the focus of this work. The first key-result of this work is
absent in related work due to difference in the sensing model.
Organization: In Section II the field model, distortion, sensor
deployment model, and useful statistical theory are outlined.
In Section III asymptotic consistency, mean-squared error,
and weak convergence aspects of field estimate are discussed.
Finally, conclusions will be presented in Section IV.

II. PROBLEM SETUP AND USEFUL CLASSICAL RESULTS

This section will review the field model, the distortion, and
some useful mathematical results. Field model appears first.

A. Field model and associated properties

The field of interest g(t) is periodic, real-valued, and
bandlimited. Without loss of generality, the period is assumed
to be T = 1. It is also assumed that the field |g(t)| ≤ 1 is
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bounded. Bandlimitedness implies that some b > 0 coefficients
are non-zero in the Fourier series. Thus,

g(t) =
b∑

k=−b

ak exp(j2πkt). (1)

Real-valued g(t) implies conjugate symmetry in the Fourier
domain, that is, ak = a∗−k; however, this symmetry will not be
utilized in this work. The (b+1) Fourier coefficients constitute
the degrees of freedom for this signal. With ||g||∞ ≤ 1, using
Bernstein’s inequality [7], we get

|g′(t)| ≤ 2πb, (2)

where 2πb rad/s is the bandwidth of the signal. For simplicity
of notation, define sb := 1/(2b + 1) as a spacing parameter
and ϕk := exp(j2πk/(2b + 1)) = exp(j2πksb). By using
(2b+ 1) samples of the field g(t), its Fourier coefficients can
be computed as follows:

g(0)
g(sb)

...
g(2bsb)

 =


1 . . . 1

ϕ−b . . . ϕb

...
...

(ϕ−b)
2b . . . (ϕb)

2b




a−b

a−b+1

...
ab


or more simply

g⃗ = Φba⃗, (3)

where the vector matrix notation is obvious. The columns of
Φb are orthogonal with a norm-square (2b + 1) under the
standard inner-product. The relation in (3) is inverted to obtain

a⃗ = (Φb)
−1g⃗ =

1

(2b+ 1)
Φ†

bg⃗, (4)

where Φ†
b is the conjugate transpose of Φb. The expression in

(4) will be used to obtain an estimate for a⃗ as discussed later.

B. Sensor deployment model and reconstruction distortion

Denote any sequence as xm
l := (xl, xl+1, . . . , xm) for

m ≥ l. It will be assumed that sensors are deployed at random
locations Un

1 in the interval of interest [0, 1]. The locations
Un
1 are i.i.d. random variables with uniform distribution and

probability density function f(u) = 1 for 0 ≤ u ≤ 1. The
locations Un

1 are not known in our model. An asymptotic
number of samples and limiting distribution of Un

1 will be
used for field estimation. The average mean-squared error will
be used as a distortion metric. If Ĝ(t) is any estimate of g(t),
then the distortion is defined as

D := E(||Ĝ− g||22) := E
[∫ 1

0

|Ĝ(t)− g(t)|2dt
]
. (5)

C. Useful mathematical results

For estimation of field from the statistical properties of
Un
1 , the following convergence results will be useful. These

results for order-statistics and quantiles are a counterpart to the
strong-law of large numbers (see [8, Ch. 10]). The ordered ver-
sion of Un

1 will be denoted by Un:n
1:n := {U1:n, U2:n, . . . , Un:n}

where Un:n is the largest and U1:n is the smallest [8].

For uniform distribution, the p-th population quantile qp is
equal to p. Then with r = [np]+1, it is known that [8, pg. 285]

Ur:n − p = −(Fn(p)− p) +Rn, (6)

where Fn(u) := 1
n

∑n
i=1 1(Ui ≤ u) is the empirical distri-

bution of Un
1 . The remainder term Rn decreases to 0 almost

surely,

Rn = O
(
n−3/4(log n)1/2(log log n)1/4

)
as n → ∞. (7)

By the strong law of large numbers [9], we know that
Fn(p)

a.s.−→ p; thus, Ur:n
a.s.−→ p from (7). Analogous to the

central limit theorem, the following fact is noted.
Fact 2.1: [8, Theorem 10.3] Let 0 < p1 < p2 < . . . <

p2b+1 < 1 and assume that (ri/n − pi) = o(1/
√
n), i =

1, 2, . . . , 2b+ 1. Then the following result holds:
√
n[Ur1:n − p1, . . . , Ur2b+1:n − p2b+1]

T d−→ N
(
0⃗,KU

)
,

where [KU ]j,j′ = pj(1− pj′) for j ≤ j′.
All the moments of U are finite since it is bounded (by

definition). The second moment of Ur:n − p, with r ≈ [np] is
bounded by.

nE(Ur:n − p)2 = p(1− p)E(Z2) +O(
√
1/n),

≤ 1

4
+O(

√
1/n). (8)

where Z ∼ N (0, 1) is a normalized Gaussian random variable.
The following fact relates consistency and L2 convergence.
Fact 2.2: [9] If Xn

a.s.−→ X and Yn
a.s.−→ Y , then aXn +

bYn
a.s.−→ aX+bY for any constants a, b ∈ R. If Xn is bounded

and Xn
a.s.−→ X , then Xn

L2

−→ X .
We now proceed to the main results of this paper.

III. SAMPLING AND ESTIMATION WITH RANDOM SAMPLES

In this section, the key results of this work are presented. It
will be shown that the field g(t) cannot be inferred uniquely
from samples collected at U∞

1 , where sample-locations are
unknown. Further, with order information on sample-locations,
consistent estimation of the field is presented.

A. It is impossible to infer g(t) uniquely from U∞
1

It will be shown that if g(U1), . . . , g(Un) is available
without the knowledge of Un

1 , then g(t) cannot be inferred
uniquely as n → ∞. Consider the statistic

Fg,n(x) =
1

n

n∑
i=1

1(g(Ui) ≤ x), (9)

where 1() are the indicator random variables. Then
Fg,n(x), x ∈ [−1, 1] completely characterizes the field values
g(U1), . . . , g(Un) and vice-versa. By Glivenko-Cantelli theo-
rem, the right hand limit in (9) converges almost surely to
P(g(U) ≤ x) for all x ∈ [−1, 1] as n ↑ ∞ [10]. This limit is
explained using Fig. 1. For any x ∈ [−1, 1] the set of points
where g(t) ≤ x can be marked on the t-axis. The length or
measure of this set is equal to P(g(U) ≤ x).
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Fig. 1. For any x ∈ [−1, 1] the set of points where g(t) ≤ x can
be marked on the t-axis. The length or measure of this set is equal to
P(g(U) ≤ x).

For 0 < θ < 1, let gθ(t) = g(t − θ), i.e., gθ(t) is the
shifted version of g(t). Since g(t) is periodic, its shifts will
be cyclic in nature in the period [0, 1]. Thus, the level-sets of
g(t− θ) will be cyclic (in θ) and its measure {u : gθ(u) ≤ x}
will be independent of θ for every x ∈ [−1, 1]. Therefore,
P(gθ(U) ≤ x) will be independent of θ for every x ∈ [−1, 1].
Thus, by only using Fg,n(x), which converges to P(g(U) ≤
x), x ∈ [−1, 1], the field g(t) cannot be inferred uniquely. This
completes the discussion of this subsection.

B. Consistent estimation of g(t) from Un:n
1:n

From now on, it will be assumed that order information
of samples is available. That is, samples g(U1:n), . . . , g(Un:n)
are available and g(t) has to be estimated. Using (4) and the
convergence results in Sec. II-C, the following estimate for the
Fourier series coefficients of g(t) is proposed:

A⃗ := [Â−b, Â−b+1, . . . , Âb]
T :=

1

(2b+ 1)
Φ†

bG⃗. (10)

where G⃗ = [g(U1:n), g(U[nsb]+1:n), . . . , g(U[n2bsb]+1:n)]
T .

With (6) and the smoothness properties (continuity) of g(t),
this estimate is obtained by substitution method in (4). Using
A⃗, an estimate for g(t) is obtained as follows

Ĝ(t) =
b∑

k=−b

Âk exp(j2πkt) = Φ(t)T A⃗ (11)

where Φ(t)T =
[
exp(−j2πbt) . . . exp(j2πbt)

]
. Intu-

itively, g(t) has a finite degrees of freedom. This enables
a procedure to estimate the Fourier series coefficients (the
degrees of freedom) from a finite number of sample estimates
of g(t). Using these estimates of the Fourier series coefficients,
the entire field of interest g(t) can be estimated. For distortion
calculation, the Parseval’s theorem [11] will be useful,

||Ĝ− g||22 =
b∑

k=−b

|Âk − ak|2. (12)

A bound on E(|Âk − ak|2) will result in a bound on the
expected mean-squared error E(||Ĝ− g||22).

We state our first result now.
Theorem 3.1 (Consistency of A⃗): Let Un:n

1:n be ordered
i.i.d. Uniform[0, 1] random variables. Define A⃗ and Ĝ(t) as in

(10) and (11). Then the estimates A⃗ and Ĝ(t) are consistent
in almost-sure and L2 sense to their respective limits, i.e.,

A⃗
a.s.−→ a⃗, Ĝ(t)

a.s.−→ g(t) and A⃗
L2

−→ a⃗, Ĝ(t)
L2

−→ g(t). (13)

Proof: Only a sketch is provided due to space con-
straints. First note that U[nisb]+1:n

a.s.−→ isb for each
i = 0, 1, . . . , 2b. Since g(t) is continuous by assumption,
g(U[nisb]+1:n)

a.s.−→ g(isb) for each i = 0, 1, . . . , 2b. Let
G⃗ := [g(U1:n), g(U[nsb]+1:n), . . . , g(U[n2bsb]+1:n)]

T and g⃗ :=
[g(0), g(sb), . . . , g(2bsb)]

T . By repeated use of Fact 2.2, any
finite linear combination c⃗T G⃗ converges almost-surely to c⃗T g⃗.
Thus, from (10), each element of A⃗ converges almost surely
to a⃗. Hence, A⃗ a.s.−→ a⃗.

Next, Ĝ(t) is a finite linear combination of A⃗. Since A⃗
a.s.−→

a⃗, therefore, Ĝ(t)
a.s.−→ g(t) in a similar fashion as above.

For L2-convergence, note that G⃗ is bounded in each co-
ordinate since |g(t)| ≤ 1 for all t. Each element of the
matrix Φb has a magnitude one. Thus, by (10) and the triangle
inequality, |Âi| ≤ ||g||∞ ≤ 1 for every i = −b,−b+1, . . . , b.
Thus, each Âi is a bounded random variable. For bounded
random sequences, from Fact 2.2, A⃗

a.s.−→ a⃗ implies that

A⃗
L2

−→ a⃗. Similarly, |Ĝ(t)| ≤
∑b

k=−b |Âk| ≤ (2b + 1) from

(11). Thus, by Fact 2.2, Ĝ(t)
a.s.−→ g(t) implies Ĝ(t)

L2

−→ g(t),
since Ĝ(t) is bounded.

The second result establishes the scaling of distortion for
the proposed estimate in (11).

Theorem 3.2: Let Un:n
1:n be ordered i.i.d. Uniform[0, 1] ran-

dom variables. Define A⃗ and Ĝ(t) as in (10) and (11). Then,

nE
[
||Ĝ− g||22

]
≤ π2b2(2b+ 1)

[
1 +O(

√
1/n)

]
, (14)

that is, the expected distortion decreases as O(1/n).
Proof: The proof is presented in two parts. First, using

the smoothness properties of g(t), the norm ||Ĝ− g||22 will be
bounded using the error in quantiles U[np]+1:n − p. Next, the
convergence rate of U[np]+1:n − p as in (8) will be utilized to
upper-bound the distortion. First note that

||Ĝ− g||22 =
b∑

k=−b

|Âk − ak|2 (15)

=
1

(2b+ 1)2
||Φ†

b(G⃗− g⃗)||22 (16)

=
1

(2b+ 1)2

b∑
k=−b

∣∣∣∣∣
2b∑
l=0

[ϕl
k]

∗(Ĝ(lsb)− g(lsb))

∣∣∣∣∣
2

(a)

≤ (2b+ 1)

(2b+ 1)2

b∑
k=−b

2b∑
l=0

|ϕl
k||Ĝ(lsb)− g(lsb))|2

(b)
=

1

(2b+ 1)

b∑
k=−b

2b∑
l=0

|Ĝ(lsb)− g(lsb))|2 (17)

(c)

≤
2b∑
l=0

|Ĝ(lsb)− g(lsb))|2. (18)
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=
2b∑
l=0

|g(U[nlsb]+1:n)− g(lsb))|2. (19)

≤ ||g′||2∞
2b∑
l=0

|U[nlsb]+1:n − lsb|2. (20)

where (a) follows by (a1 + a2 + . . . + an)
2 ≤ n(a21 + a22 +

. . . + a2n), (b) follows by |ϕk| = 1 for all k, and (c) follows
since the summation does not depend on k. Using (8), and
taking expectations on both sides

nE
(
||Ĝ− g||22

)
≤ ||g′||2∞

2b∑
l=0

nE
(
|U[nlsb]+1:n − lsb|2

)
≤ ||g′||2∞

2b∑
l=0

[
1

4
+O(

√
1/n)

]
(21)

≤ (2πb)2(2b+ 1)
1

4
+O(

√
1/n) (22)

= π2b2(2b+ 1)[1 +O(
√

1/n)]. (23)

This completes the proof.
The third result establishes the weak-convergence of Ĝ(t).
Theorem 3.3 (Central limit for Ĝ(t)): Let Un:n

1:n be or-
dered i.i.d. Uniform[0, 1] random variables and u⃗ =
(0, sb, 2sb, . . . 2bsb)

T . Define A⃗ and Ĝ(t) as in (10) and (11).
Then the estimate A⃗ and Ĝ(t) satisfy the following central
limits:

√
n(A⃗− a⃗)

d−→ N
(
0⃗,KA

)
. (24)

where KG = ∇gT (u⃗)KU∇g(u⃗) and KA⃗ is independent of n
and given in terms of KG and Φb. Further,

√
n(Ĝ(t)− g(t))

d−→ N
(
0⃗,KG(t)

)
. (25)

where KG(t) is independent of n and given in terms of KG

and Φb.
Proof: From Fact 2.1, we know that U⃗ :=

[U1:n, U[nsb]+1:n, . . . , U[n2bsb]+1:n]
T is asymptotically

normal. That is,
√
n(U⃗ − u⃗)

d−→ N (⃗0,K), where

[K]i,i′ = (i− 1)sb[1− (i′ − 1)sb] for i ≤ i′. (26)

Note that [K]i,i′ = [K]i′,i by the symmetry of a covariance
matrix. Recall G⃗ from (10). Since g(t) is a differentiable field,
by the delta-method [10],

√
n(G⃗− g⃗)

d−→ N (⃗0,KG⃗), (27)

where KG⃗ = ∇g(u⃗)TK∇g(u⃗). Observe that the matrix KG⃗
depends on the field g(t). However, by smoothness of g(t), the
vector ∇g(u⃗) is bounded and K is independent of n. Thus,
KG⃗ is independent of n. From (10), since A⃗ is obtained from
G⃗ by a complex-valued linear transformation, we get

√
n(A⃗− a⃗)

d−→ CN (⃗0,KA⃗). (28)

Observe that the limit is a complex normal Gaussian vector. In
general, the covariance properties of a zero-mean complex ran-
dom vector S⃗ are determined by E(S⃗S⃗†) and E(S⃗S⃗T ). Thus,

KA⃗ is determined by the two matrices 1
(2b+1)2Φ

†
bKG⃗Φb and

1
(2b+1)2Φ

†
bKG⃗Φ

T
b . The covariance matrix KG⃗ is independent

of n; therefore, KA⃗ is also independent of n and well defined.
Finally, Ĝ(t) is obtained from A⃗ by a t-dependent inner

product. From (11), we get Ĝ(t) = Φ(t)T A⃗. Therefore, Ĝ(t)
is a complex normal Gaussian vector. Its variance can be
determined by E(Ĝ(t)2) and E(|Ĝ(t)|2) which are equal to

1
(2b+1)2Φ(t)

TΦ†
bKG⃗Φ

T
b Φ(t) and 1

(2b+1)2Φ(t)
TΦ†

bKG⃗ΦbΦ(t)
†,

respectively. Thus the proof is complete.
This completes our technical result section. The estimation

technique outlined in this section holds well for noise-free
setting. If there is additive noise affecting the samples, then
more involved estimation techniques will be required. Obtain-
ing consistent estimates for g(lsb), l = 0, . . . , (2b+1) is more
challenging in the presence of noise.

IV. CONCLUSIONS

The reconstruction of bandlimited fields from samples taken
at unknown but statistically distributed sampling locations was
studied. Periodic one-dimensional bandlimited fields were con-
sidered for sampling. Perfect samples of the field at i.i.d. uni-
form locations were used for the reconstruction. It was shown
that a bandlimited field cannot be uniquely determined only
with samples taken at statistically distributed locations, even
if the number of samples is infinite. Using order information
on the sample locations, a consistent estimate was proposed
for the underlying field. It was shown that this estimate con-
verges in the mean-squared error sense and almost-sure sense.
Further, the mean-squared error asymptotically decreases as
O(1/n), where n is the number of obtained field samples.

REFERENCES

[1] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges:
Mobile networking for “smart dust”,” in ACM International Conference
on Mobile Computing and Networking (MOBICOM), Aug 1999, pp.
271–278. [Online]. Available: citeseer.nj.nec.com/kahn99next.html

[2] Farokh Marvasti (ed.), Nonuniform Sampling. New York, USA: Kluwer
Academic Publishers, 2001.

[3] N. Patwari, J. N. Ash, S. Kyperountas, A. O. H. III, R. L. Moses, and
N. S. Correal, “Location the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp.
54–69, Jul. 2005.

[4] P. Marziliano and M. Vetterli, “Reconstruction of irregularly sampled
discrete-time bandlimited signals with unknown sampling locations,”
IEEE Transactions on Signal Processing, vol. 48, no. 12, pp. 3462–
3471, Dec. 2000.

[5] J. Browning, “Approximating signals from nonuniform continuous time
samples at unknown locations,” IEEE Transactions in Signal Processing,
vol. 55, no. 4, pp. 1549–1554, Apr. 2007.

[6] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Performance of linear field
reconstruction techniques with noise and uncertain sensor locations,”
IEEE Transactions on Signal Processing, vol. 56, no. 8, pp. 3535–3547,
Aug. 2008.

[7] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities. London,
UK: Cambridge University Press, 1959.

[8] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. New York,
NY: John Wiley & Sons, 2003.

[9] R. Durrett, Probability: Theory and Examples, 2nd ed. Belmont, CA:
Duxbury Press, 1996.

[10] A. W. van der Vaart, Asymptotic Statistics. Cambridge, UK: Cambridge
University Press, 1998.

[11] Alan Oppenheim and Alan Willsky and Hamid Nawab, Signals and
Systems, 2nd ed. USA: Prentice Hall, 1996.

Proceedings of the 10th International Conference on Sampling Theory and Applications

531


