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Abstract—Functions of bounded mean oscillation (BMO) play
an important role in complex function theory and harmonic
analysis. In this paper a sampling theorem for bandlimited
BMO-functions is derived for sampling points that are the
zero sequence of some sine-type function. The class of sine-
type functions is large and, in particular, contains the sine
function, which corresponds to the special case of equidistant
sampling. It is shown that the sampling series is locally uniformly
convergent if oversampling is used. Without oversampling, the
local approximation error is bounded.

I. NOTATION

Let f̂ denote the Fourier transform of a function f . Lp(R),
1 ≤ p <∞, is the space of all pth-power Lebesgue integrable
functions on R, with the usual norm ‖ · ‖p, and L∞(R) is the
space of all functions for which the essential supremum norm
‖ · ‖∞ is finite. For 0 < σ <∞ let Bσ be the set of all entire
functions f with the property that for all ε > 0 there exists
a constant C(ε) with |f(z)| ≤ C(ε) exp((σ + ε)|z|) for all
z ∈ C. The Bernstein space Bpσ , 1 ≤ p ≤ ∞, consists of all
functions in Bσ , whose restriction to the real line is in Lp(R).
A function in Bpσ is called bandlimited to σ.

II. INTRODUCTION AND MOTIVATION

A well-known result in sampling theory is Brown’s theorem,
which states that the Shannon sampling series

∞∑
k=−∞

f(k)
sin(π(t− k))
π(t− k)

is locally uniformly convergent for all functions in the Paley–
Wiener space PW1

π . PW1
π is the space of all functions

f with a representation f(z) = 1/(2π)
∫ σ
−σ g(ω) e

izω dω,
z ∈ C, for some g ∈ L1[−π, π]. This sampling theorem has
been extended in various directions, for example, larger signal
spaces and non-equidistant sampling patterns [1].

In this paper we consider the sampling series
∞∑

k=−∞

f(tk)φk(t), (1)
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where the sampling points {tk}k∈Z are the zero sequence of
some sine-type function and the functions {φk}k∈Z are certain
reconstruction functions, and analyze its convergence behavior
for bandlimited BMO(R)-functions.

Definition 1. A function f : R → C is said to belong to
BMO(R), provided that it is locally in L1(R) and 1

|I|
∫
I
|f(t)−

mI(f)| dt ≤ C1 for all bounded intervals I , where mI(f) :=
1
|I|
∫
I
f(t) dt and the constant C1 is independent of I . |I|

denotes the Lebesgue measure of the set I . We further define

‖f‖BMO(R) := sup
I

1

|I|

∫
I

|f(t)−mI(f)| dt,

where the supremum is over all bounded intervals I . By
BMOπ we denote the space of all functions in Bπ that are
in BMO(R) when restricted to the real axis.

Note that ‖ · ‖BMO(R) is actually a seminorm, because we
have ‖C‖BMO(R) = 0 for all constants C ∈ C.

A consequence of the famous Fefferman–Stein theorem
[2] is the fact that an arbitrary BMO(R)-function can be
decomposed into a L∞(R)-function and the Hilbert transform
of a L∞(R)-function [3, p. 248].

Theorem A (Fefferman–Stein). There exists a constant C2 >
0 such that for all f ∈ BMO(R) there exist two functions
f1, f2 ∈ L∞(R) and a constant α such that f = f1+Hf2+α
and ‖f1‖∞ ≤ C2‖f‖BMO(R), ‖f2‖∞ ≤ C2‖f‖BMO(R).

Theorem A is an important theoretical result [3], but it also
has a high significance for applications where the Hilbert trans-
form is used, for example the calculation of the analytic signal
[4] and the analysis of signal properties [5], [6], [7]. Since the
Hilbert transform of bounded functions is of particular interest,
Theorem A is interesting because it essentially describes the
range of the Hilbert transform for L∞(R).

III. SAMPLING FOR BMOπ

Definition 2. An entire function f of exponential type π is
said to be of sine type if the zeros of f are separated and
simple, and there exist positive constants A, B, and H such
that A eπ|y| ≤ |f(x + iy)| ≤ B eπ|y| whenever x and y are
real and |y| ≥ H .

Without loss of generality, we assume that the sequence of
sampling points {tk}k∈Z is ordered strictly increasingly and
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that t0 = 0. Then, it follows that the product

φ(z) = z lim
N→∞

∏
|k|≤N
k 6=0

(
1− z

tk

)
(2)

converges uniformly on |z| ≤ R for all R < ∞, and φ is an
entire function of exponential type π [8]. It can bee seen from
(2) that φ, which is often called generating function, has the
zeros {tk}k∈Z. Moreover, it follows that

φk(t) =
φ(t)

φ′(tk)(t− tk)
(3)

is the unique function in B2π that solves the interpolation
problem φk(tl) = δkl, where δkl = 1 if k = l, and δkl = 0
otherwise.

Sampling point sequences that are made of the zeros of
functions of sine type are also complete interpolating se-
quences for B2π [9, p. 143]. This means that we restrict our
analysis to a subclass of complete interpolating sequences. We
conjecture that for arbitrary complete interpolating sequences
a result like the one in this paper cannot be obtained even for
smaller signal spaces. In particular, we conjecture that there
exist complete interpolating sequences and functions in PW1

π

such that the sampling series is even locally divergent [10].
If this conjecture is true it shows the specialty of sine type
function generated sampling patterns.

In [11] it was shown that for signals in B∞βπ , 0 < β < 1,
the sampling series (1) is uniformly convergent on all compact
subsets of R. The proof in [11] makes use of certain essential
properties of sine type functions.

Theorem C. Let φ be a function of sine type, whose zeros
{tk}k∈Z are all real and ordered increasingly. Furthermore,
let φk be defined as in (3) and 0 < β < 1. Then, for all T > 0
and all f ∈ B∞βπ we have

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0.

In the next theorem we provide a sampling theorem for
BMOπ-functions, and thus extend Theorem C to a larger
space.

Theorem 1. Let φ be a function of sine type, whose zeros
{tk}k∈Z are all real and ordered increasingly. Furthermore,
let φk be defined as in (3) and T > 0.

1) We have

sup
N∈N

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ <∞
for all f ∈ BMOπ .

2) Let 0 < β < 1. For all f ∈ BMOβπ we have

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0.

Theorem 1 shows that without oversampling the local peak
value of the approximation error is bounded. With over-
sampling the sampling series is uniformly convergent on all
compact subsets of R.

IV. PROOF OF THEOREM 1

In this section we prove Theorem 1. For the proof we need
several auxiliary results.

A. Basic Properties of BMOπ-Functions

For functions f in BMOπ , i.e., BMO(R)-functions that are
additionally bandlimited, the Fefferman–Stein decomposition
(Theorem A) is of course also possible because BMOπ ⊂
BMO(R). The functions f1 and f2 in this decomposition
are in L∞(R). However, since the function f is additionally
bandlimited, it is reasonable to ask whether the decomposition
can be performed in a such a way that f1 and f2 are also
bandlimited, i.e., in B∞π . The next theorem, which has been
proved in [12], answers this question in the affirmative.

Theorem 2. There exists a constant C3 > 0 such that for
all f ∈ BMOπ there exist two functions f1, f2 ∈ B∞π and
a constant α such that f = f1 + Hf2 + α and ‖f1‖∞ ≤
C3‖f‖BMO(R), ‖f2‖∞ ≤ C3‖f‖BMO(R).

Theorem 2 has been stated in a form to have maximum simi-
larity to the Fefferman–Stein theorem. However, the bandwidth
of the function f2 does not have to be π; it can be arbitrarily
reduced. Hence, we have the next theorem [12]. It should be
noted that a decrease of the bandwidth of the function f2
comes in general with an increase of the L∞-norm of f1 and
f2.

Theorem 3. For all 0 < β̂ ≤ 1 there exists a constant C4 such
that for all f ∈ BMOπ there exist two functions f3 ∈ B∞π and
f4 ∈ BMOβ̂π and a constant α such that f = f3+f4+α and
‖f3‖∞ ≤ C4(β̂)‖f‖BMO(R), ‖f4‖BMO(R) ≤ C4(β̂)‖f‖BMO(R).

Finally, we need a theorem about the growth behavior of
bandlimited BMO(R)-functions [12].

Theorem 4. Let f ∈ BMOσ , 0 < σ < ∞. Then, for
all γ > σ, there exists a constant C5 such that |f(z)| ≤
C5 e

γ|Im(z)| log(2 + |Re(z)|) for all z ∈ C.

B. Basic Properties of Sine-Type Functions

Two important properties of sine-type functions, which will
be used in the proof, are stated in Lemmas 1 and 2.

Lemma 1. Let f be a function of sine type, whose zeros
{λk}k∈Z are ordered increasingly according to their real
parts. Then we have

inf
k∈Z
|λk+1 − λk| ≥ δ > 0 (4)

and
sup
k∈Z
|λk+1 − λk| ≤ δ <∞ (5)

for some constants δ and δ.
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iY

−iY

t−N−1 t−Nt̃−N tN+1tN t̃N

PN (Y )
z-plane

Fig. 1. Integration path PN (Y ) in the complex plane.

Equation (4) follows directly from Definition 2 and the
proof of (5) can be found in [8, p. 164].

Lemma 2. Let f be a function of sine type. For each ε > 0
there exists a number C6 > 0 such that

|f(x+ iy)| ≥ C6 e
π|y|

outside the circles of radius ε centered at the zeros of f .

A proof of Lemma 2 can be found in [9, p. 144]. For further
information about sine-type functions see for example [8], [9].

C. Proof of Theorem 1

We first prove the second assertion of the theorem. To this
end, we extend the proof technique from [13] and [11], which
was developed to obtain results, similar to those in this paper,
for B∞π .

Let φ be an arbitrary but fixed sine-type function, whose ze-
ros {tk}k∈Z are all real and ordered increasingly. Furthermore,
let φk be defined as in (3), and let 0 < β < 1, f ∈ BMOβπ ,
and T > 0 be arbitrary but fixed. A key equation for the proof
is the identity

f(t)−
N∑

k=−N

f(tk)φk(t) =
1

2πi

∮
PN (Y )

φ(t)

(ζ − t)
f(ζ)

φ(ζ)
dζ, (6)

which is valid for all N ∈ N, Y > 0, and t ∈ R with t̃−N <
t < t̃N , where

t̃N =

{
(tN+1 + tN )/2 for N ≥ 1

(tN−1 + tN )/2 for N ≤ −1.
(7)

The integration path PN (Y ) is depicted in Figure 1. Equation
(6) can be easily verified using the residue theorem.

Let
δ = inf

k∈Z
|λk+1 − λk|

and
δ = sup

k∈Z
|λk+1 − λk|.

According to Lemma 1, we have δ > 0 and δ < ∞. Further,
let N0 be the smallest natural number for which N0δ > T .

Since t̃N ≥ Nδ for all N ∈ N, it follows that t̃N0
> T .

Furthermore, let YN = Nδ. From (6) we see that∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣
≤ 1

2π

∫ YN

−YN

∣∣∣∣f(t̃N + iy)

φ(t̃N + iy)

∣∣∣∣ |φ(t)|
|t̃N + iy − t|

dy

+
1

2π

∫ YN

−YN

∣∣∣∣f(t̃−N + iy)

φ(t̃−N + iy)

∣∣∣∣ |φ(t)|
|t̃−N + iy − t|

dy

+
1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )

φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx

+
1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )

φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx (8)

for all N ≥ N0 and t ∈ [−T, T ]. Next, we treat the integrals
on the right hand side of (8) separately. Because of (4) and
the definition of t̃N , it follows that the distance between t̃N
and the nearest zero of φ is at least δ/2. Hence, according to
Lemma 2, there exists a constant C7 > 0 such that |φ(t̃N +
iy)| ≥ C7 e

π|y| for all y ∈ R. Further, let γ satisfy βπ < γ <
π. Then we have

|f(t̃N + iy)| ≤ C5 e
γ|y| log(2 + t̃N )

for all y ∈ R, according to Theorem 4. Therefore, for the first
integral we obtain

1

2π

∫ YN

−YN

∣∣∣∣f(t̃N + iy)

φ(t̃N + iy)

∣∣∣∣ |φ(t)|
|t̃N + iy − t|

dy

≤ C5 log(2 + t̃N )‖φ‖∞
2πC7

∫ YN

−YN

e−(π−γ)|y|

|t̃N + iy − t|
dy,

≤ C5 log(2 + t̃N )‖φ‖∞
πC7(Nδ − T )

(1− e−(π−γ)YN )

(π − γ)

≤ C5 log(2 + (N + 1)δ)‖φ‖∞
πC7(Nδ − T )(π − γ)

for all N ≥ N0 and t ∈ [−T, T ]. It follows that

lim
N→∞

max
t∈[−T,T ]

1

2π

∫ YN

−YN

∣∣∣∣f(t̃N + iy)

φ(t̃N + iy)

∣∣∣∣ |φ(t)|
|t̃N + iy − t|

dy = 0.

(9)
For the second integral in (8) we obtain by the same consid-
erations that

1

2π

∫ YN

−YN

∣∣∣∣f(t̃−N + iy)

φ(t̃−N + iy)

∣∣∣∣ |φ(t)|
|t̃−N + iy − t|

dy

≤ C5 log(2 + (N + 1)δ)‖φ‖∞
πC7(Nδ − T )(π − γ)

for all N ≥ N0 and t ∈ [−T, T ], and consequently

lim
N→∞

max
t∈[−T,T ]

1

2π

∫ YN

−YN

∣∣∣∣f(t̃−N + iy)

φ(t̃−N + iy)

∣∣∣∣ |φ(t)|
|t̃−N+iy−t|

dy = 0.

(10)
Next we treat the third integral in (8). Since all zeros of φ are
real and YN = Nδ ≥ δ, it follows from Lemma 2 that there
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exists a constant C8 > 0 such that

|φ(x+ iYN )| ≥ C8 e
πYN

for all x ∈ R. Further, we have

|f(x+ iYN )| ≤ C5 e
γYN log(2 + |x|)

for all x ∈ R, according to Theorem 4. Thus, we obtain

1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )

φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx

≤ C5 e
γYN ‖φ‖∞

2πC8 eπYN

∫ t̃N

t̃−N

log(2 + |x|)
|x+ iYN − t|

dx

≤ C5 e
−(π−γ)YN ‖φ‖∞(2N + 1)δ log(2 + (N + 1)δ)

2πC8YN

=
C5 e

−(π−γ)Nδ‖φ‖∞(2N + 1)δ log(2 + (N + 1)δ)

2πC8Nδ

≤ 2C5 e
−(π−γ)Nδ‖φ‖∞ log(2 + (N + 1)δ)

πC8

for all N ≥ N0 and t ∈ [−T, T ], and consequently

lim
N→∞

max
t∈[−T,T ]

1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x+ iYN )

φ(x+ iYN )

∣∣∣∣ |φ(t)|
|x+ iYN − t|

dx = 0.

(11)
By the same considerations we obtain for the fourth integral
in (8) that

1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )

φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx

≤ 2C5 e
−(π−γ)Nδ‖φ‖∞ log(2 + (N + 1)δ)

πC8

for all N ≥ N0 and t ∈ [−T, T ] , and

lim
N→∞

max
t∈[−T,T ]

1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )

φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t|

dx = 0.

(12)
Combining (8), (9), (10), (11), and (12) we see that

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0,

which proves the second assertion of the theorem.
Next, we prove the first assertion of the theorem. Let T > 0

and f ∈ BMOπ be arbitrary but fixed, and choose some β̂
with 0 < β̂ < 1. According to Theorem 3 there exist two
functions f3 ∈ B∞π and f4 ∈ BMOβ̂π and a constant α such
that f = f3+f4+α and ‖f3‖∞ ≤ C4(β̂)‖f‖BMO(R). It follows
that∣∣∣∣∣f(t)−

N∑
k=−N

f(tk)φk(t)

∣∣∣∣∣ ≤
∣∣∣∣∣f3(t)−

N∑
k=−N

f3(tk)φk(t)

∣∣∣∣∣
+

∣∣∣∣∣f4(t)−
N∑

k=−N

f4(tk)φk(t)

∣∣∣∣∣
+

∣∣∣∣∣α−
N∑

k=−N

αφk(t)

∣∣∣∣∣ . (13)

From Theorem 1 in [11] we know that there exists a constant
C9 such that

sup
N∈N

max
t∈[−T,T ]

∣∣∣∣∣f3(t)−
N∑

k=−N

f3(tk)φk(t)

∣∣∣∣∣ ≤ C9‖f3‖∞

and

sup
N∈N

max
t∈[−T,T ]

∣∣∣∣∣α−
N∑

k=−N

αφk(t)

∣∣∣∣∣ ≤ C9α.

For the second term on the right hand side of (13) we have

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f4(t)−
N∑

k=−N

f4(tk)φk(t)

∣∣∣∣∣ = 0

according to the second assertion of the theorem. Thus, it
follows that

sup
N∈N

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣
≤ C9(‖f3‖∞ + α) + C10

<∞,

which completes the proof of the first assertion.
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