
Incremental Sparse Bayesian Learning for

Parameter Estimation of Superimposed Signals

Dmitriy Shutin, Wei Wang, Thomas Jost

Abstract—This work discuses a novel algorithm for joint sparse
estimation of superimposed signals and their parameters. The
proposed method is based on two concepts: a variational Bayesian
version of the incremental sparse Bayesian learning (SBL)– fast
variational SBL – and a variational Bayesian approach for pa-
rameter estimation of superimposed signal models. Both schemes
estimate the unknown parameters by minimizing the variational
lower bound on model evidence; also, these optimizations are
performed incrementally with respect to the parameters of a
single component. It is demonstrated that these estimations
can be naturally unified under the framework of variational
Bayesian inference. It allows, on the one hand, for an adaptive
dictionary design for FV-SBL schemes, and, on the other hand,
for a fast superresolution approach for parameter estimation of
superimposed signals. The experimental evidence collected with
synthetic data as well as with estimation results for measured
multipath channels demonstrate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

In this paper our goal is to estimate the parameters of the

following model

y =

L∑

l=1

s(θl)wl + ξ = S(Θ)w + ξ, (1)

where y is an N -dimensional signal vector, s(θl), l =
1, . . . , L, is a set S(Θ) = [s(θ1), . . . , s(θL)] of known

basis functions that are nonlinearly parameterized by Θ =
[θ1, . . . ,θL]; w = [w1, . . . , wL]

T is a vector of basis weights,

and ξ is a random perturbation vector, which is often assumed

to follow a circular symmetric normal distribution with zero

mean and covariance Σ = λ−1I . Such model is almost

ubiquitous in signal processing literature, and appears under

different disguises in almost all fields of signal processing,

e.g., in array processing, channel estimation, radar, to name

just a few.

The estimation of signal parameters Θ and w has often

been solved using Expectation-Maximization (EM) type of

algorithms [1]–[3], mainly due to the nonlinearity of (1)

with respect to the parameter set Θ. Yet these methods are

applicable only when the order L of the model is known

and fixed – a requirement that is rarely satisfied in practice.

However, introducing sparsity constraints into the parameter

estimation step might eliminate this drawback of the EM-based

estimation.

Sparse signal processing methods have become a very active

area of research in recent years due to their rich theoretical

nature and their usefulness in a wide range of applications

(see e.g., [4]–[6]). With a few minor variations, the general

goal of sparse reconstruction is to optimally estimate the

parameters w of the model (1) with fixed design matrix

S(Θ) ≡ [s1, . . . , sL]. The sparse solution is obtained by

imposing specific sparsity constraints on the signal parameter

w [4], [6].

Sparse Bayesian learning (SBL) [5], [7], [8] is a family

of empirical Bayes techniques that finds a sparse estimate

of w by modeling the weights using a hierarchical prior

p(w|α)p(α) =
∏L

l=1 p(wl|αl)p(αl), where p(wl|αl) is a

Gaussian probability density function (pdf) with zero mean

and precision parameter αl, also called the sparsity parameter;

larger values of αl drive the corresponding weight toward zero,

thus encouraging a sparse solution. One particular method for

SBL recently proposed in the literature is a fast variational

SBL (FV-SBL) [8]. The FV-SBL algorithm optimizes the

corresponding objective function – the variational lower bound

on the model evidence log p(y) – incrementally, i.e., with

respect to one basis function at a time. This allows for a

very efficient and adaptive implementation of FV-SBL [9]

— a feature that is very useful for estimating superimposed

signals. Yet due to the nonlinear dependence of (1) on the

parameter set Θ, the classical sparse estimation techniques are

inapplicable. Obviously, an appropriate sampling or gridding

of the parameters Θ [10], [11] circumvents the nonlinearity

problem. This approach, however, does not provide high

resolution estimates of the parameters; alternatively, heuristics

have to be used to make the gridding adaptive.

Our goal in this paper is to show how SBL technique can

be applied to (1) to enable joint sparse signal extraction and

superresolution parameter estimation. The proposed technique

builds upon two key concepts: variational Bayesian estimation

of signal parameters Θ, and an incremental FV-SBL algorithm

[8]. Through the use of variational Bayesian techniques both

schemes can be jointly realized within the same optimization

framework. The first attempts to do so have been proposed

in [12], where the authors make a typical assumption on the

independence of individual components in (1). Our empirical

evidence suggest that this assumption is overly optimistic.

The new algorithm is based on the FV-SBL scheme. This

allows taking correlations between the linear parameters of the

superimposed signals into account. Additionally, the FV-SBL

algorithm allows for an adaptive implementation [9], which

further accelerates the inference.

Throughout the paper we make use of the following no-

tation. Vectors and matrices are represented as, respectively,

boldface lowercase letters, e.g., x, and boldface uppercase

letters, e.g., X . The expression [B]lk denotes a matrix ob-
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tained by deleting the lth row and kth column from the

matrix B; similarly, [b]l denotes a vector obtained by deleting

the lth element from the vector b. With a slight abuse of

notation we will sometimes refer to a matrix as a set of

column vectors; for instance we write a ∈ X to imply

that a is a column in X , and X \ a to denote a matrix

obtained by deleting the column vector a ∈ X . We use

el = [01, . . . , 0l−1, 1l, 0l+1, . . . , 0L]
T to denote a canonical

vector of appropriate dimension. Finally, for a random vector

x, CN(x|a,B) denotes a circular symmetric normal distribu-

tion pdf with mean a and covariance matrix B; similarly, for a

random variable x, Ga(x|a, b) = ba

Γ(a)x
a−1 exp(−bx) denotes

a gamma pdf with parameters a and b.

II. SIGNAL MODEL AND ADAPTIVE FAST SPARSE

BAYESIAN LEARNING

In Fig. 1 we show the graphical model that captures the

dependencies between the parameters of (1). According to the

α w y

λ k = 1, . . . , L

θk

Fig. 1. Graphical model representing (1) with L components.

graph structure, the joint pdf of the graph variables can be

factored as

p(w, λ,α,Θ,y) = p(y|w, λ,θ)p(w|α)p(α)p(λ)p(Θ), (2)

where p(y|w, λ,θ) = CN(y|S(Θ)w, λ−1I), p(w|α) =∏L

l=1 CN(wl|0, α
−1
l ), p(α) ∝

∏L

l=1 α
−1
l , and p(λ) ∝ λ−1,

following the standard SBL model assumption [8], [9].1 The

choice of the prior p(Θ) is arbitrary in the context of this work

and is generally application specific. The variational inference

on this graph aims at estimating a “proxy” pdf q(w,α, λ,Θ)
that maximizes the lower bound on the log-evidence log p(y)
[13]:

log p(y) ≥ E
q(w,α,λ,Θ)

log
p(w, λ,α,Θ,y)

q(w,α, λ,Θ)
(3)

We will assume that q(w,α, λ,Θ) factors as follows

q(w,α, λ,Θ) = q(w)q(λ)
L∏

l=1

q(αl)q(θl), (4)

with the variational factors in (4) constrained as: q(w) =
CN(w|ŵ, Φ̂), q(αl) = Ga(αl|1, α̂

−1
l ), and q(λ) =

Ga(λ|N/2, Nλ̂−1/2). In case of parameters Θ we assume

q(θl) = δ(θl−θ̂l).
2 By doing so we restrict ourselves to point

1In the following we will consider complex measurement data; extensions
for real case are trivial. Also, we will use non-informative form of prior p(λ)
and p(αl), ∀l. This is known as SBL with automatic relevance determination
[7].

2More complex forms of q(θl) are outside the scope of this paper.

estimates3 of these parameters. The optimal q(w,α, λ,Θ) is

then found by maximizing (3) with respect to the parameters

{ŵ, Φ̂, λ̂, α̂1, θ̂1, . . . , α̂L, θ̂l} by cycling through all factors in

a “round-robin” fashion [13].

Should the parameters Θ be assumed as known and fixed,

i.e., Ŝ ≡ S(Θ̂), update expressions for the variational param-

eters can be easily found [14]:

Φ̂ =
(
λ̂S(Θ̂)HS(Θ̂) + diag(α̂)

)−1

, ŵ = λ̂Φ̂S(Θ̂)Hy,

(5)

α̂l =
1

|ŵl|2 + Φ̂ll

, λ̂ =
N

‖t− Ŝŵ‖2 +Trace(Φ̂Ŝ
H
Ŝ)

, (6)

where ŵl is the lth element of the vector ŵ, and Φ̂ll is the

lth element on the main diagonal of the matrix Φ̂.

The FV-SBL algorithm is a computationally efficient

method to accelerate the convergence of the inference ex-

pressions (5) and (6). Essentially, it maximizes the bound

(3) incrementally: the variational updates of q(αl) and q(w)
for a fixed l are performed successively ad infinitum while

keeping the other variational factors fixed. The convergence

of q(αl) can then be established analytically, which allows

for a significant speed-up [8]; moreover, FV-SBL allows for

an adaptive implementation, where basis functions can also

be easily added to the model (for more information on the

adaptive FV-SBL algorithm the reader is referred to [9]).

One of the key features of variational methods is that the

factors in (4) can be updated in any order.4 This allows

incorporating the estimation of q(Θ) in the FV-SBL scheme,

as explained in the following.

III. ESTIMATION OF SIGNAL PARAMETERS Θ

Let us begin by considering a variational inference of

q(Θ). To this end we define Θl = Θ \ θl. Following the

standard variation inference steps (see [13]), it can be shown

that the bound on log p(y) with respect to q(θl) can be

expressed as log p(y) ≥ Eq(θl) log
p̃(θl)
q(θl)

, where p̃(θl) ∝

exp
(
E
q(w,λ,Θ

l)
log p(y|w,Θ, λ)p(Θ)

)
. This bound is max-

imized when the Kullback-Leibler divergence between q(θl)
and p̃(θl) is minimal. Since q(θl) is constrained to be a Dirac

distribution, the minimum divergence is achieved when q(θl)
is aligned with the mode of p̃(θl). By evaluating p̃(θl) we

find θ̂l as

θ̂l = argmax
θl

{
log p(θl)− λ̂‖rl − ŵls(θl)‖

2

−λ̂
∑

k 6=l

2ℜ
{
Φkls(θ̂k)

Hs(θl)
}
− λ̂Φll‖s(θl)‖

2
}
,

(7)

3As a point estimate we understand maximum likelihood or maximum a

posteriori estimation; the latter case is automatically obtained when a prior
p(θl) 6= const.

4Note, however, that the order in which the factors are updated is important
since different update orderings might lead to different local optima of the
variational lower bound.
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where

rl = y −

L∑

k=1,k 6=l

ŵks(θ̂k), (8)

and ℜ{·} denotes the real part operator. Finding θ̂l from

(7), which requires nonlinear optimization, readily gives the

optimal pdf q(θl). Note that the last two terms in (7) account

for the correlations between the weights w of the components,

effectively penalizing the estimator for θl. We are now ready to

bring all the pieces of the proposed sparse estimation scheme

together.

The proposed algorithm updates the factors in (4) in groups,

where an lth group contains factors {q(θl), q(αl), q(w)}:
starting with q(θl), we then update q(αl) and q(w) using the

FV-SBL scheme. If the estimate of α̂l diverges, the corre-

sponding component is removed from the model; otherwise,

its parameters are updated, and the next component is con-

sidered. The realization of the algorithm includes two steps:

the initialization and update which are sequentially carried out

and summarized in Algorithms 1 and 2, respectively. Note that

Algorithm 1 Initialization

L← 0, S(Θ)← [ ], Φ̂← [ ], α̂← [ ], Continue← true
while Continue do

Compute rL+1 from (8) and q(θL+1) from (7)

s← s(θ̂L+1)
ς ← (λ̂sHs− λ̂2sHS(Θ)Φ̂S(Θ)Hs)−1

ω2 ← ς2(λ̂sHy − λ̂2sHS(Θ)Φ̂(Θ)Hy)2

if ω2 > ς then

Add a new component s(θ̂L+1)
Update q(αL+1): α̂L+1 ← (ω2 − ς)−1

Update q(w) using a new basis s:

XL+1 = Φ̂
−1
−

λ̂S(Θ)HssHS(Θ)

α̂L+1 + sHs

Φ̂L+1 =


 X−1

L+1 −λ̂ Φ̂S(Θ)Hs

α̂L+1+ς−1

−λ̂ s
H
S(Θ)Φ̂

α̂L+1+ς−1 (α̂L+1 + ς−1)−1




(9)

S(Θ)← [S(Θ), s(θ̂L+1)],
ŵL+1 ← λ̂Φ̂L+1S(Θ)Hy,

L← L+ 1
else

Reject s(θ̂L+1); Continue = False
end if

end while

the inverse of a Schur complement XL+1 in the Algorithm

1 can be computed efficiently using a rank-one update [15].

The variables ω and ς and the test ω2 > ς are explained in

detail in [8], [9]. Let us point out that the sparsity inducing

property of the whole scheme is “encoded” in the test ω2 > ς
that determines the convergence of q(αl) update: if the mean

of q(αl) diverges, the component is removed from the model.

Algorithm 2 Update

while Continue do

Compute rl from (8) and q(θl) from (7)

s← s(θ̂l)

Sl ← S(Θ̂) \ sl, Φ̂l =
[
Φ̂−

Φ̂ele
H

l
Φ̂

eH

l
Φ̂el

]

ll

ς ← (λ̂sHl sl − λ̂2sHl SlΦ̂lS
H

l sl)
−1

ω2 ← (λ̂ςls
H
l y − λ̂2ςls

H
l SlΦ̂lS

H

l y)2

if ω2 > ς then

S(Θ)← [Sl, s]
Update q(αl): α̂l ← (ω2 − ς)−1;

Update q(w) using s and α̂l

Compute Φ̂ as in (9), ŵ ← λ̂Φ̂S(Θ)Hy

else

Remove the component sl
S(Θ)← Sl; L← L− 1
Update q(α): α̂l ← [α̂]l
Update q(w) :Φ̂← Φ̂l, ŵ ← λ̂Φ̂S(Θ)Hy

end if

end while

IV. SIMULATION RESULTS

Here we study the performance of the proposed estimation

scheme using synthetic data generated according to model (1)

as well measured data.

For simplicity we consider a Single-Input-Single-Output

channel with zero Doppler shift; thus, each component is

characterized by a delay θl = {τl} and a complex gain wl,

i.e., y =
∑L

l=1 wls(τl) + ξ. The channel is synthesized in

frequency domain with the following parameters: L = 4,
N = 1537, signal bandwidth is fB = 120MHz; the signal

was sampled at the Nyquist rate and the carrier frequency

is assumed to be 5.2GHz. The delays of synthetic multi-

path components are set to 17.5 ns, 40.83 ns, 59.33 ns, and
91.67 ns; corresponding complex amplitudes are selected as

wl = ejϕl , l = 1, . . . , 4, where ϕl is a random variable drawn

from a uniform distribution. As as replica of the transmitted

signal s(t) we use the actual measured calibration data of

the Medav RUSK-DLR channel sounder [16]. The calibration

data is obtained by directly connecting the transmitter to

the receiver and recording the received signal. Its sampled

version is then used to construct a vector s(·), whose shifted

versions are used in synthesizing the channel, as well as in

the estimation step.

In Fig.2 we show the estimated impulse response and

transfer function for 15dB SNR. Observe that the estimated

responses closely follow the measured data with only four

components. Let us stress that depending on the actual noise

realization, the algorithm tends to overestimate the number of

components. In Fig. 3(a) we plot distributions of estimated

sparsity parameters for all detected components collected

over 1000 Monte Carlo runs with different noise realizations.

Note that in the worst case the algorithm identifies up to 8
components, all of which are very close to the true ones. This
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Fig. 2. Estimated synthetic channel in a) time domain and b) frequency
domain for 15dB SNR.
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Fig. 3. a)Estimated sparsity parameters α̂ and b) delays for synthetic
scenarios. c) Error distribution for estimated τl when 4 components are found.

can also be seen in Fig. 3(b), where we plot the distribution

of all estimated delays. The inverse sparsity parameters of

these artifact components are also quite small, which means

they do not contribute to the model. In the case when the

algorithm identifies exactly 4 components we can compute

the error between the true and the estimated delay. In Fig 3(c)

we plot the histogram of estimated delay errors. Note that

the estimation error is smaller than 1% of the used sampling

period (≈ 8.3ns).

A. Estimation results for measured multipath channels.

Here we consider the estimation of the actual measured

multipath channels using the proposed algorithm. The data

was collected during a recent measurement campaign [16]

performed at German Aerospace Center in Oberpfaffenhofen,

Germany. The measurements parameters coincide with those

used in simulations. As the actual channel parameters cannot

be known for a measured channel, we qualitatively compare

the performance of the proposed scheme to that of the SAGE

algorithm [3]. As the latter scheme requires knowing the

number of components L, we first estimate it using the

proposed method, and then use SAGE with same model order.

The estimation results are summarized in Fig. In total L = 31
path has been identified. Despite some similarities, the SAGE

algorithm tends to miss weak components. Also, it tends to

cluster multipaths around areas of high power, which often

indicates estimation artifacts [12].

V. CONCLUSION

In this work an adaptive fast variational Sparse Bayesian

Learning (FV-SBL) algorithm has been used for parameter es-
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Fig. 4. Estimated channel response using a) proposed algorithm and b) using
SAGE algorithm.

timation of superimposed signals. Using variational framework

both superresolution parameter estimation and sparse signal

extraction can be done jointly by minimizing the common

objective function. Thus, the proposed scheme “frees” the clas-

sical EM-based parameter estimation from specifying a model

order. Simulation results obtained with synthetic and measured

data demonstrate the effectiveness of the proposed estimation

scheme. However, more detailed analysis of experimental data

is needed.

REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,” IEEE Signal Processing Mag., pp.
67–94, July 1996.

[2] M. Feder and E. Weinstein, “Parameter Estimation of Superimposed
Signals Using the EM Algorithm,” IEEE Trans. on Acoustics, Speech,

and Sig. Proc., vol. 36, no. 4, pp. 477–489, April 1988.
[3] B. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen,

“Channel parameter estimation in mobile radio environments using the
SAGE algorithm,” IEEE Journal on Sel. Areas in Comm., vol. 17, no. 3,
pp. 434–450, March 1999.

[4] E. Candes and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[5] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational
approximation for Bayesian inference,” IEEE Signal Process. Mag.,
vol. 25, no. 6, pp. 131–146, November 2008.

[6] D. Donoho, “Compressed sensing,” IEEE Transactions on Information

Theory, vol. 52, no. 4, pp. 1289 –1306, april 2006.
[7] M. Tipping, “Sparse Bayesian learning and the relevance vector ma-

chine,” J. Machine Learning Res., vol. 1, pp. 211–244, June 2001.
[8] D. Shutin, T. Buchgraber, S. R. Kulkarni, and H. V. Poor, “Fast varia-

tional sparse Bayesian learning with automatic relevance determination
for superimposed signals,” IEEE Trans. on Sig. Proc., vol. 59, no. 12,
pp. 6257 –6261, Dec. 2011.

[9] ——, “Fast adaptive variational sparse Bayesian learning with automatic
relevance determination,” in IEEE Int. Conf. on Acoustics Speech and

Sig. Proc., Prague, Czech Republic, May 2011, pp. 2180–2183.
[10] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressed channel

sensing: A new approach to estimating sparse multipath channels,”
Proceedings of the IEEE, vol. 98, no. 6, pp. 1058–1076, Jun. 2010.

[11] D. Malioutov, M. Cetin, and A. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE Trans. on

Sign. Proc., vol. 53, no. 8, pp. 3010–3022, 2005.
[12] D. Shutin and B. H. Fleury, “Sparse variational Bayesian SAGE algo-

rithm with application to the estimation of multipath wireless channels,”
IEEE Trans. on Sig. Proces., vol. 59, no. 8, pp. 3609 – 3623, Aug. 2011.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

[14] C. M. Bishop and M. E. Tipping, “Variational relevance vector ma-
chines,” in Proc. 16th Conf. Uncer. in Artif. Intell. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 46–53.

[15] W. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31,
no. 2, pp. pp. 221–239, 1989.

[16] W. Wang and T. Jost, “A low-cost platform for time-variant wireless
channel measurements with application to positioning,” IEEE Trans. on

Instrumentation and Measurement, vol. 61, no. 6, pp. 1597 –1604, june
2012.

Proceedings of the 10th International Conference on Sampling Theory and Applications

516


