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Abstract—We extend ideas from compressed sensing to a
structured sparsity model related to fusion frames. We present
theoretical results concerning the recovery of sparse signals in
a fusion frame from undersampled measurements. We provide
both nonuniform and uniform recovery guarantees. The novelty
of our work is to exploit an incoherence property of the fusion
frame which allows us to reduce the number of measurements
needed for sparse recovery.

I. INTRODUCTION

Compressed sensing (CS) predicts that one can efficiently
recover a sparse vector from few measurements by solving
a convex optimization problem [1]–[3]. Often signals possess
more structure than mere sparsity, and exploiting such struc-
ture often allows to further reduce the amount of required
measurements, see, e.g., [4]. In this paper, we investigate a
structured sparsity model related to fusion frames. These were
introduced as generalizations of classical frames, in order to
better capture the richness of multidimensional signals with
an inherent structure [5]. Here, subspaces take the role of the
frame vectors.

We investigate sufficient conditions in order to recover a
sparse signal in a fusion frame via mixed `1/`2 minimization.
We both give nonuniform and uniform recovery guarantees.
The uniform recovery result is based on the fusion RIP
introduced in [6]. Hereby, we improve the recovery conditions
given in [6] by exploiting the additional information inherent
in the fusion frame structure.

II. FUSION FRAMES

A fusion frame for Rd is a collection of N subspaces Wj ⊂
Rd and associated weights vj that satisfies

A‖x‖22 ≤
N∑
j=1

v2
j ‖Pjx‖22 ≤ B‖x‖22

for all x ∈ Rd and for some universal fusion frame bounds
0 < A ≤ B < ∞, where Pj ∈ Rd×d denotes the orthogonal
projection onto the subspace Wj . For simplicity we assume
that the dimensions of the Wj are equal, dim(Wj) = k.

For a fusion frame (Wj)
N
j=1, let us define the Hilbert space

H as

H = {(xj)Nj=1 : xj ∈Wj , ∀j ∈ [N ]} ⊂ Rd×N ,

where we denote [N ] = {1, . . . , N}. The mixed `2,1-norm of
a vector x ≡ (xj)

N
j=1 ∈ H is defined as

‖(xj)Nj=1‖2,1 ≡
N∑
j=1

‖xj‖2.

Furthermore, the ’`0-norm’ (which is actually not even a quasi-
norm) is defined as

‖x‖0 = ]{j ∈ [N ] : xj 6= 0}.

We call a vector x ∈ H s-sparse, if ‖x‖0 ≤ s. Our sparsity
model requires that the ’blocks’ xj are either zero or nonzero
as a whole.

A. Sparse Recovery Problem

We take m linear combinations of an s-sparse vector x0 =
(x0
j )
N
j=1 ∈ H, i.e.,

y = (yi)
m
i=1 =

 N∑
j=1

aijx
0
j

m

i=1

, yi ∈ Rd.

Let us denote the block matrices AI = (aijId)i∈[m],j∈[N ] and
AP = (aijPj)i∈[m],j∈[N ] that consist of the blocks aijId and
aijPj respectively. Here Id is the identity matrix of size d×d.
Then we can formulate this measurement scheme as

y = AIx
0 = APx

0.

We can replace AI by AP since the relation Pjxj = xj holds
for all x ∈ H and j ∈ [N ]. We wish to recover x0 from y.
This task can be stated as

(L0) x̂ = argminx∈H‖x‖0 s.t. APx = y.

This optimization problem is NP-hard. Therefore, we instead
propose the following program

(L1) x̂ = argminx∈H‖x‖2,1 s.t. APx = y.

B. Relation with Previous Work

A special case of the sparse recovery problem above appears
when all subspaces coincide with the ambient space Wj =
Rd for all j. Then the problem reduces to the well studied
joint sparsity setup [7] in which all the vectors have the same
sparsity structure.
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Furthermore, our problem is itself a special case of the
block sparsity setup [8], with significant additional structure
that allows us to enhance existing results. In fact, the fusion
frame model assumes the additional prior knowledge that the
xj’s are contained in the fusion frame subspaces Wj .

Finally in the case d = 1, the projections equal 1, and hence
the problem reduces to the classical recovery problem Ax = y
with x ∈ RN and y ∈ Rm.

C. Incoherence Parameter

We define the parameter λ as a measure of the coherence
of the fusion frame subspaces as

λ = max
i 6=j
‖PiPj‖2→2, i, j ∈ [N ].

Note that ‖PiPj‖2→2 equals the largest absolute value of the
cosines of the principle angles between Wi and Wj . Observe
that if the subspaces are all orthogonal to each other, i.e., λ =
0, then only one measurement suffices to recover x0 as y1 =∑
j a1jx

0
j is an orthogonal decomposition. This observation

suggests that fewer measurements are necessary when λ gets
smaller. In this work our goal is to provide a solid theoretical
understanding of this observation.

D. A Nonuniform Result

We first consider the recovery of a fixed sparse signal from
random measurements. To this end, we introduce the Gaussian
matrix whose entries consist of independent standard normal
distributed random variables and the Bernoulli matrix where
the entries are independent random variables taking the values
±1 with equal probability.

Theorem II.1. Let (Wj)
N
j=1 be given with parameter λ ∈

[0, 1] and x ∈ H be s-sparse. Let A ∈ Rm×N be a Bernoulli
or Gaussian matrix. Assume that

m ≥ C(1 + λs) lnα(max{N, sd}) ln(ε−1), (1)

where C > 0 is a universal constant. Then with probability at
least 1 − ε, (L1) recovers x from y = APx. Here α = 1 in
the Bernoulli case and α = 2 in the Gaussian case.

We provide an outline of the proof in [9]. We remark that
Theorems II.1 is also shown to be stable with respect to
noise on the measurements and under passing to approximately
sparse signals.

III. SPARSE RECOVERY USING ”FUSION” RIP

In this section we study uniform recovery of sparse fusion
frame signals from their random measurements. One common
way to study such recovery conditions is via the restricted
isometry property (RIP). A version adapted to fusion frames
has been introduced in [6].

Definition III.1 (Fusion RIP). Let A ∈ Rm×N and (Wj)
N
j=1

be a fusion frame for Rd. The fusion restricted isometry
constant δs is the smallest constant such that

(1− δs)‖x‖22 ≤ ‖APx‖22 ≤ (1 + δs)‖x‖22 (2)

for all x ∈ H of sparsity ‖x‖0 ≤ s.

The following result was also shown in [6].

Proposition III.2 (Fusion RIP implies recovery). Let
(A, (Wj)

N
j=1) with fusion RIP constant δ2s < 1/3. Then (L1)

recovers all s-sparse x from y = APx.

This result shows that given a fusion frame (Wj)
N
j=1 and

matrix A, for uniform recovery it is enough to check whether
the block matrix AP satisfies the fusion RIP. Recovery is
also stable under noise and passing to compressible signals.
Another result from [6] tells us that if the underlying ran-
dom measurement matrix A satisfies the classical RIP, AP

satisfies fusion RIP with same constants. This suggests that
m & s ln(N/s) is sufficient for many random measurement
ensembles (up to some log factors). However, the following
main result of our work shows that the inherent structure
of fusion frames provides additional information that can be
exploited to derive stronger recovery conditions.

Theorem III.3. Let (Wj)
N
j=1 be given with dim(Wj) = k and

parameter λ ∈ [0, 1]. Let A ∈ Rm×N be a Bernoulli matrix
and δ ∈ (0, 1). Assume that

m ≥ Cδ−2k
√
λs2 + s ln4(max{N, d}). (3)

Then with probability at least 1 − 2e−cδ
2m, the fusion RIP

constant δs of ÃP = 1√
m
AP satisfies δs ≤ δ. Above C, c > 0

are universal constants.

Theorem III.3 can be extended for the random matrices with
independent subgaussian entries. Presently the uniform result
(3) behaves slightly worse than the nonuniform one (1) for
small λ and suffers from additional log-terms. On the other
hand, we gain uniformity and stronger stability.

IV. PROOF OUTLINE

Due to lack of space, we only present the outline of the
proof of Theorem III.3. The detailed proof will appear in a
forthcoming journal publication. Let us first give a character-
ization of the fusion RIP constant. The definition (2) implies
that

δs = sup
x∈Ds,N

∣∣∣‖ÃPx‖22 − ‖x‖22
∣∣∣ ,

where Ds,N := {x ∈ H : xi ∈ Wi, ‖x‖2 ≤ 1, ‖x‖0 ≤ s}.
Next we derive an estimate for the expectation of δs. To this
end, we denote Eij(Y ) ∈ Rmd×Nd, i ∈ [m], j ∈ [N ], as the
block matrix (consisting of m×N blocks) with a single block
entry Y ∈ Rd×d at position (i, j) and the entry 0 ∈ Rd×d
elsewhere. Let εij be the entries of A and observe that

ÃPx =
1√
m

∑
i∈[m],j∈[N ]

εij(Qijx),

where Qij := Eij(Pj). We define the matrix Vx whose
columns are 1√

m
Qijx for all i, j, i.e.,

Vx =
1√
m
(Q11x|Q12x| . . . |QmNx).
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Then we can write ÃPx = Vxε, where ε is a Bernoulli vector
of length mN . Denoting the set A = {Vx : x ∈ Ds,N}, we
have

δs = sup
x∈Ds,N

∣∣‖Vxε‖22 − ‖x‖22∣∣ = sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ .

Following Krahmer et al. [10] where they use chaining meth-
ods in order to get bounds for this type of random variables,
we obtain

E sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ . dF (A)d2→2(A)

+
(
dF (A)γ2(A, ‖ · ‖2→2) + γ2(A, ‖ · ‖2→2)

2
)
. (4)

Here, dF (A) and d2→2(A) denote the radius of A in the
Frobenius and the operator norms, respectively. For the defi-
nition of Talagrand’s γ2-functional we refer to [11]. It is easy
to check that

d2→2(A) = sup
x∈Ds,N

‖Vx‖2→2 ≤ 1/
√
m and dF (A) = 1.

The γ2-functional can be estimated by the well-known Dudley
integral [11]

γ2(A, ‖ · ‖2→2) .
∫ d2→2(A)

0

√
lnN (A, ‖ · ‖2→2, u)du, (5)

where the covering number N (T, d, u) is defined as the
smallest number of open balls of radius u in (T, d) needed to
cover T . Therefore estimating the expectation in (4) amounts
to estimating covering numbers which will perform in two
different ways similar to [12].

a) Small values of u: For S ⊂ [N ] we introduce the set
B2
S := {x : supp(x) ⊂ S, ‖x‖2 ≤ 1}. Furthermore define

the norm ‖|x‖| := ‖Vx‖2→2. Observe that ‖|x‖| ≤ 1√
m
‖x‖2.

Then using subadditivity of covering numbers and a standard
volumetric argument (see, e.g., [13, Chapter 8.4]) we obtain

N (A, ‖ · ‖2→2, u) = N (Ds,N , ‖| · ‖|, u)

≤
∑
S⊂[N ]
|S|=s

N
(
B2
S , ‖| · ‖|, u

)
≤
∑
S⊂[N ]
|S|=s

N
(
B2
S ,
‖ · ‖2√
m
,u

)

=
∑
S⊂[N ]
|S|=s

N
(
B2
S , ‖ · ‖2, u

√
m
)
≤
(
eN

s

)s(
1 +

2

u
√
m

)sk
.

For u > 0, it thus holds

lnN (A, ‖ · ‖, u) ≤ s ln(eN/s) + sk ln

(
1 +

2

u
√
m

)
. (6)

b) Large values of u: We define the set

B2,1 :=

{
x ∈ H : ‖x‖2,1 ≤ 1, ‖x‖2 ≤

1√
s

}
.

Then it is evident that Ds,N ⊂
√
sB2,1. Therefore,

N (A, ‖ · ‖2→2, u) = N (Ds,N , ‖| · ‖|, u)

≤ N (
√
sB2,1, ‖| · ‖|, u) = N

(
B2,1, ‖| · ‖|,

u√
s

)
. (7)

For the task of estimating N (B2,1, ‖| · ‖|, u), we invoke the
so-called empirical method of Maurey. We fix u > 0 and
x ∈ B2,1. The idea is to approximate x by a finite set of very
sparse vectors of `2-norm 1. In order to construct this set, we
discretize the unit sphere of each frame subspace Wj . Denote
Sj = {y ∈ H : ‖yj‖2 = 1; yi = 0, i 6= j}. A volumetric
argument yields that

N (Sj , ‖ · ‖2, ε̃) ≤
(
1 +

2

ε̃

)k
.

For each j, let Tj ⊂ Sj be the covering set of Sj with this
cardinality. We will use 1-sparse elements from the set T =⋃
j∈[N ] Tj in order to find a vector z that is close to x. To this

end, we define a random vector Z̃ as follows

P
(
Z̃ =

−→
E j

(
xj
‖xj‖2

))
= ‖xj‖2 for j ∈ [N ],

and Z̃ = 0 with probability 1 − ‖x‖2,1. Here the notation−→
E j(x) corresponds to the block column vector of size N with
the vector x in j-th position and 0 elsewhere. Observe that
EZ̃ = x. Let M be a number to be determined later. Let
Z̃1, . . . , Z̃M be independent copies of Z̃, and put

z̃ =
1

M

M∑
`=1

Z̃`.

We now denote Z` ∈ T as the closest vector to Z̃` in the set
T for all `. Then we have ‖Z̃` − Z`‖2 ≤ ε̃. The M -sparse
vector z = 1

M

∑M
`=1 Z` will be our candidate to approximate

x. By the triangle inequality

‖|z− x‖| ≤ ‖|z− z̃‖|+ ‖|z̃− x‖|. (8)

With the choice ε̃ = u
√
m

2 , it is not hard to deduce
‖|z − z̃‖| ≤ u/2 . It remains to show that ‖|z̃ − x‖| ≤
u/2 with nonzero probability for large enough M . Since
‖|z̃ − x‖| =

∥∥∥ 1
M

∑M
`=1(VZ̃`

− Vx)
∥∥∥

2→2
is a sum of cen-

tered random matrices, we may invoke the noncommutative
Bernstein inequality due to Tropp [14, Theorem 1.6] in order
the bound the tail probability of this norm. This leads to the
condition

M ≥ ln(md+mN)

(
16
√
λ+ 1/s

mu2
+

3√
mu

)
, (9)

which implies the existence of a realization of the vector z̃ for
which ‖|z̃−x‖| ≤ u/2. Together with (8) this yields ‖|z−x‖| ≤
u. Since each Z` ∈ T takes at most

|T | =
⋃
j∈[N ]

|Tj | ≤ N
(
1 +

4

u
√
m

)k
many values, z can take at most NM

(
1 + 4

u
√
m

)kM
values.

Setting M to the least integer that satisfies (9), we deduce that
the covering numbers can be estimated by√

lnN (B2,1, ‖| · ‖|, u) ≤

√√√√ln

[
NM

(
1 +

4

u
√
m

)kM]
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≤

√
16
√
λ+ 1/s

mu2
+

3√
mu

√
k ln(D) ln

[
N

(
1 +

4

u
√
m

)]
,

(10)

where D := md+mN . Finally we estimate the Dudley inte-
gral (5) by integrating (6) from 0 to a suitable κ ∈ (0, 1/

√
m)

and (10) from κ to 1/
√
m with replacing u by u/

√
s due

to (7). Plugging all estimates derived for d2→2(A), dF (A)
and γ2(A, ‖ · ‖2→2) into (4), we obtain Eδs ≤ δ, provided
Condition (3) of Theorem III.3 holds with an appropriate
constant.

The probability estimate for δs is derived by applying
a concentration inequality provided also in [10] having all
complexity parameters at hand. This completes the proof.

V. NUMERICAL EXPERIMENTS

In this section, we compare two sparsity models: Fusion
frame and block sparsity. We present numerical experiments
that illustrate that the additional knowledge about the fusion
frame subspaces, that is x ∈ H, significantly improves the
recovery compared to the block sparsity case where we do
not assume such a knowledge. (See Section II-B.) In all
of our experiments, we use SPGL1 [15], [16] to solve the
minimization problems.

a) In Fig.1a, we fix a fusion frame with N = 200 subspaces
in Rd, d = 5 with k = 1. Then we vary the sparsity level
s from 5 to 35, and generate an s-sparse vector x in the
fusion frame. We form y = APx with a randomly generated
Gaussian matrix A ∈ Rm×N for different values of m and
solve the minimization problem (L1) with and without the
constraint that x ∈ H. Repeating this test 50 times for each
s for both cases, we record the values of m which yield a
recovery success rate of at least %96.

b) Fig.1b depicts a relation between the number of measure-
ments needed m and the incoherence parameter λeff where

λeff =
1

s
max
i∈[N ]

∑
j∈S
‖PiPj‖2→2.

In the Bernoulli case, the parameter λ in (1) can be replaced by
λeff which is smaller. To that end, we fix the sparsity level to
s = 25 and generate various fusion frames with N = 180 and
different values of λeff . Then we generate an s-sparse vector
in each fusion frame and find the number of measurements m
which yields an empirical recovery rate of 96%.
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