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Abstract—1-bit compressed sensing was introduced by
Boufounos and Baraniuk in 2008 as a model of extreme quan-
tization; only the sign of each measurement is retained. Recent
theoretical and algorithmic advances, combined with the ease of
hardware implementation, show that it is an effective method
of signal acquisition. Surprisingly, in the high-noise regime
there is almost no information loss from 1-bit quantization. We
review and revise recent results, and compare to closely related
statistical problems: sparse binary regression and binary matrix
completion.

I. INTRODUCTION

Discrete measurements arise both in signal processing and
statistical inference, but for different reasons. In some cases,
they are inherent to the data—consider a statistical experiment
in which the response is a binary variable indicating the
presence or absence of a certain disease. In other cases the
level of discretization is chosen—consider quantization in
analog-to-digital conversion. We focus on the extreme case
in which all measurements are binary. For further signal-
processing motivation, see [1].

It turns out that the abstract statistical models and signal-
processing models nearly match, but with subtle differences
that have strong influence on the methods of signal recon-
struction and the theoretical challenges. We point out these
differences and how the ideas from 1-bit compressed sensing
allow new methods and results in binary regression.

In Section II, we describe recent results in 1-bit compressed
sensing and give connections to standard compressed sensing.
These methods allow for a new semi-parametric approach to
sparse binary regression, described in Section III. In Section
IV we describe modern theoretical results in binary PCA with
missing entries, or binary matrix completion.

II. 1-BIT COMPRESSED SENSING

Unquantized compressed sensing [7] concerns the recon-
struction of sparse signals from linear measurements. Let ‖x‖0
give the number of nonzero entries of x. We assume that
‖x‖0 ≤ s i.e., x is sparse. One observes data of the form

yi = 〈ai,x〉 i = 1, . . . ,m

and would like to reconstruct x ∈ Rn from {yi,ai}.
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Fig. 1: On left: Linear measurements y1 = 〈a1,x〉 and
y2 = 〈a2,x〉 determine that x must lie in the intersection
of the two hyperplanes. On right: Single bit measurements
y1 = sign(〈a1,x〉) and y2 = sign(〈a2,x〉) determine that x
must lie in the region denoted by + signs.

In 1-bit compressed sensing [4], only the sign of each
measurement is retained:

yi = sign(〈ai,x〉) i = 1, . . . ,m.

Above sign(t) = 1 if t ≥ 0 and sign(t) = −1 it t < 0. In
matrix form,

y = sign(Ax)

where A ∈ Rm×n is a matrix whose i-th row is equal to ai,
and we allow the sign function to act on a vector by acting
on each individual entry.

There is a stark geometric difference between these two
observation models. In unquantized compressed sensing, each
measurement determines a hyperplane in which x must reside.
In 1-bit compressed sensing, each measurement determines
a hyperplane, but now we are only told which side of the
hyperplane x resides on (see Figure 1).

Do the 1-bit measurements contain sufficient information
to reconstruct x? Clearly, exact reconstruction is impossible
because the measurements only give a finite number of bits of
information and the signal lies in an infinite set. Furthermore,
the measurements retrieve no information about the norm of
x. Thus, we may only hope to approximate the direction of
x. Equivalently, we assume that x ∈ Sn−1 and endeavor to
approximate x itself.

A natural method to reconstruct x is to find a vector that

Proceedings of the 10th International Conference on Sampling Theory and Applications

481



matches the data and has the required structure:

Find x′ such that ‖x′‖0 ≤ s, ‖x
′‖2 = 1 (1)

and sign(Ax′) = y.

This program has recently been shown to give nearly optimal
accuracy. If A is a Gaussian matrix, Jacques et al. [10] show
that O(δ−1s log(n/δ)) measurements are sufficient to recon-
struct x with `2 error at most δ. Aside from the logarithmic
factor, Theorem 1 in [10] shows that this error bound in nearly
minimax. It is further shown that a variation on this program
provides stability to adversarial noise. Yet there still remain
important challenges because the above program contains two
nonconvex constraints: ‖x‖0 ≤ s and ‖x‖2 = 1. Thus, there
is no known algorithm that is guaranteed to return the solution
to the above program in polynomial time.

In order to give a polynomial-time solver, Plan and Ver-
shynin [17] propose a convex programming approach:

min
x′
‖x′‖1 such that ‖Ax′‖1 = 1 and sign(Ax′) = y.

(2)
Above, ‖Ax‖1 =

∑
i |〈ai,x〉| =

∑
i yi〈ai,x〉 is a linear

constraint; in fact, the program can be recast as a linear
program. Let x̂ be the solution to the above program. Theorem
1.1 in [17] shows that∥∥∥∥ x̂

‖x̂‖2
− x

∥∥∥∥
2

≤ δ

with high probability provided that m ≥ O(δ−5s log2(n/s)).
We leverage recent results on discrete embeddings [16] to give
a slight refinement of this result.

Theorem 1. Let s ≤ m ≤ n. Let A have i.i.d. standard
normal entries. Suppose that

m ≥ Cδ−4s log2(n/s).

Then, with probability at least 1−C1 exp(−cδm) the following
holds uniformly over all signals x ∈ R

n satisfying ‖x‖1 ≤√
s, ‖x‖2 = 1. Let y = sign(Ax). Then the solution x̂ to the

linear program (2) satisfies∥∥∥∥ x̂

‖x̂‖2
− x

∥∥∥∥
2

≤ δ.

Above, and in what follows, C and c are absolute numeric
constants.

Proof: Proceed as in the proof of Theorem 1.1 in [17],
but replace Theorem 2.1 in [17] with Theorem 3.1 in [16].

Remark 1 (Soft sparsity). The assumption that ‖x‖1 ≤
√
s

is a relaxation of the exact sparsity constraint ‖x‖0 ≤ s.
Indeed, suppose that ‖x‖0 ≤ s. Then by the Cauchy-Schwarz
inequality,

‖x‖1 ≤
√
‖x‖0 · ‖x‖2 =

√
‖x‖0 ≤

√
s.

However, the constraint ‖x‖1 ≤
√
s allows for x to be

compressible instead of exactly sparse—it only requires a fast
decay rate of the entries of x.

Remark 2 (Optimality and δ dependence). Up to the power
of 2 on the logarithm, the number of measurements required
for a fixed level of accuracy matches what is needed for
unquantized compressed sensing, and also matches the error
bound achieved by the non-convex program (1). Let us also
consider the dependence of m on δ and compare to the
solution to the non-convex program. If x̂ is the solution
to (1) the number of measurements required is essentially
proportional to δ−1. If x̂ is the solution to the convex program
(2), Theorem 1 requires m to be proportional to δ−4. On
one hand, the former requires exact sparsity while the latter
softens this requirement. Further, as shown in [15], in the
noisy problem and with soft sparsity the δ−4 dependence is
sometimes optimal. Nevertheless, in the noiseless problem it is
an open problem whether the δ dependence can be improved
for an efficient solver.

For adaptive approaches to 1-bit compressed sensing with
impressive reconstruction guarantees, see [8], [9].

III. NOISY 1-BIT COMPRESSED SENSING

In noisy 1-bit compressed sensing, the data takes the form

y = sign(Ax + z) (3)

where z is a noise term with i.i.d. entries.
In order to reconstruct x, one would like to soften the

constraint, sign(Ax) = y used in the noiseless problem.
A natural way to do this would be to bound the Hamming
distance between sign(Ax) and y. Unfortunately, this would
give a non-convex constraint. Thus, Plan and Vershynin [15]
suggest a different convex program to estimate x:

max
x′

∑
i

yi〈ai,x
′〉 such that ‖x′‖2 ≤ 1, ‖x′‖1 ≤

√
s.

(4)
The solution enjoys a high level of accuracy.

Theorem 2 ( [15], Corollary 3.1). Fix x ∈ Sn−1 satisfying
‖x‖1 ≤

√
s. Let A have independent standard normal entries.

Let y = sign(Ax + z) and suppose that z is a Gaussian
noise vector with independent N(0, σ2) entries. Let δ > 0
and suppose that

m ≥ Cδ−4(σ2 + 1)s log(2n/s).

Then, with probability at least 1−8 exp(−cδ4m), the solution
x̂ to the convex program (4) satisfies

‖x̂− x‖2 ≤ δ.

In contrast to Theorem 1, this is a non-uniform result—
it holds for one fixed x with a random draw of A. See
Theorem 1.3 in [15] for a uniform result which also considers
adversarial noise and for the treatment of much more general
signal structures outside of sparsity. We also note that when
σ > 1 this error bound nearly matches the minimax error
bound achievable by any estimator from unquantized mea-
surements. See [18, Theorem 1] and [15, Section 3]. This has
the following implication: When the signal-to-noise ratio is
low, 1-bit measurements contain almost as much information
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as unquantized measurements. The preceding theoretical con-
clusion is backed up with numerical evidence in [12].

A. Sparse binary regression

Sparse binary regression, and in particular sparse logistic
regression, are often used to explain statistical data in which
the response variable is binary. It is common to assume that the
data is generated according to the generalized linear model:
yi ∈ {+1,−1} is a Bernoulli random variable satisfying

E yi = θ(〈ai,x〉) (5)

for some function θ : R→ [0, 1]. Note that this model implies
that

P (yi = 1) =
θ(〈ai,x〉) + 1

2
=: f(〈ai,x〉).

Thus, the noisy 1-bit compressed sensing model 3 can always
be recast using the generalized linear model by taking f(t) :=
P (zi ≥ −t). The two are equivalent as long as 1 − f is a
distribution function.

There are a number of theoretical results in sparse binary
regression, focusing on sparse logistic regression [3], [5], [11],
[13], [14], [19], [20]. A main message is that O(δ−2s log(n))
measurements are sufficient to reconstruct x up to error δ
by using `1-penalized maximum likelihood estimation [14].
Interestingly, these results allow for the reconstruction of
both the direction, and norm of x. However, there are two
limitations to this maximum-likelihood-based approach: 1)
knowledge of the function θ defining the generalized linear
model is imperative, and 2) as the norm of x increases, the
negative log-likelihood loses the strong convexity needed in
the theoretical treatment.

The ideas from 1-bit compressed sensing allow us to over-
come these two limitations. Indeed, the solution to (4) remains
accurate for nearly any generalized linear model, but knowl-
edge of the function θ is unnecessary in the reconstruction of
x. To make this precise, define

λ := E g θ(g)

where g ∼ N(0, 1). λ gives a notion of how correlated
the response y is with the linear functionals 〈ai,x〉. Higher
correlation improves reconstruction. For example, if f is the
logistic function, then λ ≈ 0.41.

Theorem 3 ( [15], Corollary 3.1). Fix x ∈ Sn−1 satisfying
‖x‖1 ≤

√
s. Let A have independent standard normal entries

and suppose that y follows the generalized linear model (5).
Let δ > 0 and suppose that

m ≥ Cδ−4λ−2s log(2n/s).

Then, with probability at least 1−8 exp(−cδ4m), the solution
x̂ to the convex program (4) satisfies

‖x̂− x‖2 ≤ δ.

Remark 3. The assumption that ‖x‖2 = 1 in the theorem is
really no assumption at all, since the norm of x may be ab-
sorbed into the definition of θ simply by rescaling the function.

Further, suppose the following two mild assumptions on the
model: 1) θ is monotonically increasing and 2) θ(0) = 0. Then
for a positive scalar t and standard normal random variable g,
E θ(tg)g is an increasing function of t. The implication is that
rescaling θ, to absorb the norm of x causes λ to increase as
long as ‖x‖2 ≥ 1. Thus, the reconstruction of the direction
of x only improves as the magnitude of x increases. This
contrasts with the maximum-likelihood approach discussed
above.

B. sub-gaussian measurements

Up until now, we have considered Gaussian measurement
vectors. One may ask whether 1-bit compressed sensing is
possible with other random measurement schemes.

Let us consider Bernoulli measurement vectors in which
each entry of ai is an independent Bernoulli random vari-
able, so that ai ∈ {+1,−1}n. It is well known [7] that
measurements of this form lead to near-optimal results in
unquantized compressed sensing. Does the same hold true for
1-bit compressed sensing?

Consider two candidate signals x = (1, 0, 0, . . . , 0) and
x̄ = (1, 0.9, 0, 0, . . . , 0). Then one has sign(〈ai,x〉) =
sign(〈ai, x̄〉) deterministically. Thus, when the measurement
vectors are Bernoulli, x and x̄ are indistinguishable, and
reconstruction of either is ill-posed.

However, it turns out that the above negative example is
atypical. Signal reconstruction with Bernoulli measurements is
possible—as long as the signal is not too sparse. This will be
quantified by a bound on the maximum entry of x in Theorem
4 below.

Recall that a random variable η is called sub-gaussian if it
has a sub-gaussian tail: P

(
η > t

)
≤ Ce−ct

2

. Recall also that
Bernoulli random variables are sub-gaussian.

Theorem 4 ( [2], Theorem 1.3). Fix x ∈ Sn−1 satisfying
‖x‖1 ≤

√
s. Let a be a symmetric, sub-gaussian random vari-

able with unit variance. Let A be generated with coordinates
that are independent copies of a. Assume that y follows the
generalized linear model (5) and the first three derivatives of
θ are bounded. Suppose

m ≥ Cδ−4λ−2s log(n/s)

and let x̂ be the solution to the convex program (4). Then with
probability at least 1− 4 exp(−cδ4m)

‖x̂− x‖2 ≤ δ + C

(
‖x‖∞
λ3

)1/4

.

For a more precise treatment which also allows for θ to
be the discontinuous sign function, see [2]. We note that this
theorem allows no correlation between the entries of A. For
a treatment of the case when each row of A is Gaussian with
correlations between entries see Section 3.4 in [15].

C. General signal structures

While sparse signal structures are intrinsic in the sparse
binary regression model and in some compressed sensing
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problems, it is often of interest to consider more general signal
structures. As a common example, x may not be sparse itself,
but it may be sparse in a known dictionary, so that x = Dv
for a sparse vector v. Alternatively, x itself could be a matrix
with low rank.

In general, the signal structure of x is defined by knowledge
of a set K to which x belongs. Since we assume that ‖x‖2 =
1, we may also assume that K ⊂ B2 where B2 is the unit
ball. In this case, Vershynin and Plan [15] suggest to take the
estimate of x to be the solution to the following program.

max
x′

m∑
i=1

yi〈ai,x
′〉 such that x′ ∈ K. (6)

For example, we may take K = B2 ∩
√
sBn

1 where Bn
1 is the

`1 ball. This recovers the convex program (4).
In this general case, reconstruction of x to accuracy δ

requires O(δ−4w(K)2) binary measurements, where w(K) is
the Gaussian mean width of K. See [15] for details.

IV. BINARY MATRIX COMPLETION

In a complementary line of research, Davenport et al. [6]
analyze the following problem. Suppose that you see a subset
of entries of a binary matrix, i.e., a matrix filled with ±1
entries. From the observed entries, what information can
be determined about unobserved entries? Problems of this
nature arise in various applications. Consider for example the
voting history of US senators on a number of bills, but with
missing votes when a senator is out of town; or consider
binary recommendation systems such as Pandora, in which one
wishes to recommend unrated songs based on observed user
ratings. For more applications see [6]. Davenport et al. assume
that the data follows from the generalized linear model, but
with three large differences from the considerations of the
previous sections: 1) the measurements only give information
about single entries of the matrix, 2) a low-rank structure is
assumed in place of a sparse structure, and 3) θ (from Equation
(5)) is assumed to be known. Under these assumptions, the
authors show that nuclear-norm constrained maximum likeli-
hood estimation gives minimax optimal reconstruction of the
probability distribution of the unseen entries.

V. CONCLUSION

Binary data is intrinsic to many naturally arising inverse
problems, and also arises in extreme quantization. But the
signal or model that is to be reconstructed often comes from an
infinite, albeit low-dimensional, set. This blend of continuous
and discrete leads to interesting challenges in developing
and analyzing accurate methods of signal reconstruction. We
reviewed a number of recent results, which show that 1-bit
measurements can give comparable information to unquan-
tized measurements. Further, the methods of 1-bit compressed
sensing allow for a semi-parametric treatment of sparse binary
regression. One question that arises naturally from the above
work is whether we can give a semi-parametric treatment of
binary matrix completion which does not assume knowledge
of θ.
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