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Abstract—Sparse recovery guarantees in compressive sensing
and related optimization problems often assume incoherence
between the ’sensing’ and ’sparsity’ domains. In practice, in-
coherence is rarely satisfied due to physical constraints and
limitations. Here we discuss the notion of local coherence,
and show that by matching the sampling strategy to the local
coherence at hand, sparse recovery guarantees extend to a rich
new class of sensing problems beyond incoherent systems. We
discuss particular applications to compressive MRI imaging and
polynomial interpolation.

I. INTRODUCTION

One of the main results in the theory of compressed
sensing is that signals which allow for an approximately
sparse representation in a suitable basis or dictionary can be
recovered from relatively few linear measurements via convex
optimization, provided these measurements are sufficiently
incoherent with the basis in which the signal is sparse.

In practice, incoherence is rarely satisfied due to physical
constraints limiting the freedom of the sensing basis. Here
we recall the notion of local coherence, as introduced in [6]
and somewhat implicitly in [5], and summarize coherence-
guided sampling strategies and reconstruction guarantees that
extend beyond incoherent sampling. In short, local coherence
sampling implies that, if Φ is an orthonormal basis from which
we can subsample to construct a sensing matrix, and if our
signal class is assumed sparse in an alternative orthonormal
basis Ψ, then one should sample rows from Φ proportionately
to their maximal correlation to any row from Ψ.

We illustrate the power of coherence-based sampling
through two examples: compressed sensing imaging and and
polynomial interpolation. In compressed sensing imaging,
coherence-based sampling provides a theoretical justification
for empirical studies [2], [3] pointing to variable-density
sampling strategies for improved MRI compressive imaging.
In polynomial interpolation, coherence-based sampling implies
that sampling points drawn from the Chebyshev distribution
are better suited for the recovery of polynomials and smooth
functions than uniformly distributed sampling points, aligning
with classical results on Lagrange interpolation [4].

II. NOTATION

Before continuing, let us fix some notation. We will refer to
the set of natural numbers {1, 2, . . . , N} using the shorthand
notation [N ]. For a vector x = (xj) ∈ CN , the usual `p vector
norm is ‖x‖p, and by an abuse of notation, the `0-“norm” is
defined as ‖x‖0 = #{xj : xj 6= 0}. A vector x ∈ CN is called
s-sparse if ‖x‖0 ≤ s, and the best s-term approximation of

a vector x ∈ CN is the s-sparse vector xs ∈ CN satisfying
xs = infu:‖u‖0≤s ‖x − u‖p. Clearly, xs = x if x is s-sparse.
Informally, x is called compressible if ‖x−xs‖ decays quickly
as s increases. Finally, for two nonnegative functions f(n) and
g(n) on the natural numbers, we write f & g (or f . g) if
there exists a constant C > 0 such that f(n) ≥ Cg(n) (or
f(n) ≤ Cg(n), respectively) for all n ∈ N.

III. INCOHERENT SAMPLING

Here we recall sparse recovery results for structured random
sampling schemes corresponding to bounded orthonormal
systems, of which the partial discrete Fourier transform is a
special case. We refer the reader to [7] for an expository article
including many references.

Definition 1 (Bounded orthonormal system (BOS)): Let D
be a measurable subset of Rd.
• A set of functions {ψj : D → C, j ∈ [N ]} is called

an orthonormal system with respect to the probability
measure ν if

∫
D ψ̄j(u)ψk(u)dν(u) = δjk, where δjk

denotes the Kronecker delta.
• Let µ be a probability measure on D. A random sample

of the orthonormal system {ψj} is the random vector
(ψ1(U), . . . , ψN (U)) that results from drawing a sam-
pling point U from the measure µ.

• An orthonormal system is said to be bounded with bound
K if supj∈[N ] ‖ψj‖∞ ≤ K.

Suppose now that we have an orthonormal system {ψj}j∈[N ]

and m random sampling points U1, U2, . . . , Um drawn in-
dependently from some probability measure µ. Here and
throughout, we assume that the number of sampling points
m� N . As shown in [7], if the system {ψj} is bounded, and
if the probability measure µ from which we sample points is
the orthogonalization measure ν associated to the system, then
the (underdetermined) structured random matrix A : CN →
Cm whose rows are the independent random samples will be
well-conditioned, satisfying the so-called restricted isometry
property [1] with nearly order-optimal restricted isometry con-
stants with high probability. Consequently, matrices associated
to random samples of bounded orthonormal systems have nice
sparse recovery properties.

Proposition 2 (Sparse recovery through BOS): Consider
the matrix A ∈ Cm×N whose rows are independent random
samples of an orthonormal system {ψj , j ∈ [N ]} with bound
supj∈[N ] ‖ψj‖∞ ≤ K, drawn from the orthogonalization
measure ν associated to the system. If the number of random

Proceedings of the 10th International Conference on Sampling Theory and Applications

476



samples satisfies

m & K2s log3(s) log(N), (III.1)

for some s & log(N), then the following holds with probabil-
ity exceeding 1−N−C log3(s).

For each x ∈ CN , given noisy measurements y = Ax +√
mη with ‖η‖2 ≤ ε, the approximation

x# = arg min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤
√
mε

satisfies the error guarantee

‖x− x#‖2 .
1√
s
‖x− xs‖1 + ε.

An important special case of such a matrix construction
is the subsampled discrete Fourier matrix, constructed by
sampling m � N rows uniformly at random from the
unitary discrete Fourier matrix Ψ ∈ CN×N with entries
ψj,k = 1√

N
ei2π(j−1)(k−1). Indeed, the system of complex

exponentials ψj(u) = ei2π(j−1)u, j ∈ [N ], is orthonormal
with respect to the uniform measure over the discrete set
D = {0, 1

N , . . . ,
N−1
N }, and is bounded with optimally small

constant K = 1. In the discrete setting, we may speak of
a more general procedure for forming matrix constructions
adhering to the conditions of Proposition 2: given any two
unitary matrices Φ and Ψ, the composite matrix Φ∗Ψ is
also a unitary matrix, and this composite matrix will have
uniformly bounded entries if the orthonormal bases (φj) and
(ψk), corresponding to the rows of Φ and Ψ respectively, are
mutually incoherent:

µ(Φ,Ψ) :=
√
N sup1≤j,k≤N | 〈φj , ψk〉 | ≤ K (III.2)

Indeed, if Φ and Ψ are mutually incoherent, then the rows of
B =

√
NΨ∗Φ constitute a bounded orthonormal system with

respect to the uniform measure on D = {0, 1
N , . . . ,

N−1
N }.

Proposition 2 then implies a sampling strategy for recon-
structing signals x ∈ CN with assumed sparse representation
in the basis Ψ, that is x = Ψb and b ≈ bs, from a few
linear measurements: form a sensing matrix A ∈ Cm×N by
sampling rows i.i.d. uniformly from an incoherent basis Φ,
collect measurements y = Ax+ η, ‖η‖2 ≤ ε, and solve the `1
minimization program,

x# = arg min
z∈CN

‖Ψ∗z‖1 subject to ‖Az − y‖2 ≤
√
mε

This scenario is referred to as incoherent sampling.

IV. LOCAL COHERENCE SAMPLING

Consider more generally the setting where we aim to
compressively sense signals x ∈ CN with assumed sparse
representation in the orthonormal basis Ψ ∈ CN×N , but
our sensing matrix A ∈ Cm×N can only consist of rows
from some fixed orthonormal basis Φ ∈ CN×N that is not
necessarily incoherent with Ψ. In this setting, we ask: Given
a fixed sensing basis Ψ and sparsity basis Φ, how should
we sample rows of Ψ in order to make the resulting system
as incoherent as possible? We will answer this question by

introducing the concept of local coherence between two bases
as described in [5], [6], whereby in the discrete setting the
coherences of individual elements of the sensing basis are
calculated and used to derive the sampling strategy.

The following result says that regions of the sensing basis
that are more coherent with the sparsity basis should be
sampled with higher density. The following is essentially a
generalization of Theorem 2.1 in [5], but for completeness,
we include a short self-contained proof.

Theorem 3 (Sparse recovery via local coherence sampling):
Consider a measurable set D and a system {ψj , j ∈ [N ]}
that is orthonormal with respect to a measure ν on D which
has square-integrable local coherence,

sup
j∈[N ]

|ψj(u)| ≤ κ(u),

∫
u∈D
|κ(u)|2ν(u)du = B. (IV.1)

We can define the probability measure µ(u) = 1
Bκ

2(u)ν(u)
on D. Draw m sampling points u1, u2, . . . , um independently
from the measure µ, and consider the the matrix A ∈ Cm×N
whose rows are the random samples ψj(uk), j ∈ [N ]. Consider
also the diagonal preconditioning matrix P ∈ Cm×m with
entries pk,k = 1/µ(uk). If the number of sampling points

m & B2s log3(s) log(N), (IV.2)

for some s & log(N), then the following holds with probabil-
ity exceeding 1−N−C log3(s).

For each x ∈ CN , given noisy measurements y = Ax +√
mη with ‖Pη‖2 ≤

√
mε, the approximation

x# = arg min
z∈CN

‖z‖1 subject to ‖PAz − Py‖2 ≤
√
mε

satisfies the error guarantee

‖x− x#‖2 .
1√
s
‖x− xs‖1 + ε

Proof: Consider the functions Qj(u) =
√
B

κ(u)ψj(u). The
system {Qj} is bounded with supj∈[N ] ‖Qj‖∞ ≤

√
B, and

this system is orthonormal on D with respect to the sampling
measure µ:∫

u∈D
Q̄j(u)Qk(u)µ(u)du

=

∫
u∈D

(
1

κ(u)
ψ̄j(u))(

1

κ(u)
ψk(u))(κ2(u)ν(u))du

=

∫
u∈D

ψ̄j(u)ψk(u)ν(u)du = δjk (IV.3)

Thus we may apply Proposition 2 to the system {Qj}, noting
that the matrix of random samples of the system {Qj} may
be written as PA.

In the discrete setting where {ψj}j∈[N ] and {φk} are rows
of unitary matrices Ψ and Φ, and ν is the uniform measure
over the set D = {0, 1

N , . . . ,
N−1
N }, the integral in condition

IV.1 reduces to a sum,

sup
k∈[N ]

√
N | 〈ψj , φk〉 | ≤ κj ,

1

N

N∑
j=1

κ2j = B. (IV.4)
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This motivates the introduction of the local coherence of an
orthonormal basis {φj}Nj=1 of CN with respect to the orthonor-
mal basis {ψk}Nk=1 of CN is the function µloc = (µj) ∈ RN
defined coordinate-wise by

µj = sup
1≤k≤N

√
N |〈ϕj , ψk〉|.

We have the following corollary of Theorem 3.
Corollary 4: Consider a pair of orthonormal basis (Φ,Ψ)

with local coherences bounded by µj ≤ κj . Let s ≥ 1, and
suppose that

m & s(
1

N

N∑
j=1

κ2j ) log4(N).

Select m (possibly not distinct) rows of Φ∗ independent and
identically distributed from the multinomial distribution on
{1, 2, . . . , N} with weights cκ2j to from the sensing matrix
A : CN → Cm. Consider also the diagonal preconditioning
matrix P ∈ Cm×m with entries pk,k = 1√

cκj
.

Then the following holds with probability exceeding 1 −
N−C log3(s).

For each x ∈ CN , given measurements y = Ax + η, with
‖Pη‖2 ≤

√
mε, the approximation

x# = arg min
u∈CN

‖Ψ∗u‖1 subject to ‖y − PAu‖2 ≤
√
mε

satisfies the error guarantee

‖x− x#‖2 .
1√
s
‖Ψ∗x− (Ψ∗x)s‖1 + ε.

Remark 5: Note that the local coherence not only influences
the embedding dimension m, it also influences the sampling
measure. Hence a priori, one cannot guarantee the optimal
embedding dimension if one only has suboptimal bounds for
the local coherence. That is why the sampling measure in
Theorem 3 is defined via the (known) upper bounds κ and
‖κ‖2 rather than the (usually unknown) exact values µloc and
‖µloc‖2, showing that local coherence sampling is robust with
respect to the sampling measure: suboptimal bounds still lead
to meaningful bounds on the embedding dimension.
We now present two applications where incoherent sam-
pling fails, but local coherence sampling provides a sampling
scheme with sparse recovery guarantees.

V. APPLICATIONS

A. Variable-density sampling for compressed sensing MRI

In Magnetic Resonance Imaging, after proper discretiza-
tion, the unknown image (xj1,j2) is a two-dimensional ar-
ray in Rn×n, and allowable sensing measurements are two-
dimensional Fourier transform measurements:

φk1,k2 =
1

n

∑
j1,j2

xj1,j2e
2πi(k1j1+k2j2)/n, −n/2+1 ≤ k1, k2 ≤ n/2

Natural sparsity domains for images, such as discrete spatial
differences, are not incoherent to the Fourier basis.

A number of empirical studies, including the very first
papers on compressed sensing MRI , observed that image

reconstructions from compressive frequency measurements
could be significantly improved by variable-density sampling.

Note that lower frequencies are more coherent with wavelets
and step functions than higher frequencies. In [6], the local
coherence between the two-dimensional Fourier basis and
bivariate Haar wavelet basis was calculated:

Proposition 6: The local coherence between frequency
φk1,k2 and the bivariate Haar wavelet basis Ψ = (ψI) can
be bounded by

µ(φk1,k2 ,Ψ) .

√
N

(|k1 + 1|2 + |k2 + 1|2)1/2

Note that this local coherence is almost square integrable
independent of discretization size n2, as

1

N

N∑
j=1

µ2
j . log(n).

Applying Corollary 4 to compressive MRI imaging, we then
have

Corollary 7: Let n ∈ N. Let Ψ be the bivariate Haar
wavelet basis and let Φ = (φk1,k2) be the two-dimensional
discrete Fourier transform. Let s ≥ 1, and suppose that
m & s( 1

N log5(N). Select m (possibly not distinct) fre-
quencies (φk1,k2) independent and identically distributed from
the multinomial distribution on {1, 2, . . . , N} with weights
proportional to the inverse squared Euclidean distance to
the origin, 1

(|k1+1|2+|k2+1|2) , and form the sensing matrix
A : CN → Cm.

Then the following holds with probability exceeding 1 −
N−C log3(s).

For each image x ∈ Cn×n, given measurements y = Ax,
the approximation

x# = arg min
u∈Cn×n

‖Ψ∗u‖1 subject to ‖Dy −Au‖2 ≤ ε

satisfies the error guarantee

‖x− x#‖2 .
1√
s
‖Ψ∗x− (Ψ∗x)s‖1 + ε.

Numerical results such as those detailed in [?] and illus-
trated below in Figure 1 confirm that variable-density sampling
strategies significantly outperform uniform sampling strategies
as well as deterministic sampling strategies, and Corollary 7
provides theoretical justification for such observations. Below
we provide a numerical comparison of various sampling strate-
gies, including the sampling distribution given in Corollary
7. The following images were made from total variation
minimization rather than Haar wavelet minimization, but the
theory for Fourier-Wavelet sampling is extended to the total
variation minimization setting in [6].

B. Sparse Legendre expansions for smooth function interpo-
lation

Here we consider the problem of recovering polynomials g
from m sample values g(x1), g(x2) . . . , g(xm), with sampling
points x` ∈ [−1, 1] for ` = 1, . . . ,m. If the number of
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Fig. 1. Various reconstructions of an MRI image x ∈ R256×256 with total
variation minimization from m = 6400 noiseless partial DFT measurements
sampled from various distributions. Beside each reconstruction is a plot of fre-
quency space {(k1, k2) : −N/2 + 1 ≤ k1, k2 ≤ N/2} and the frequencies
used in its reconstruction. (a) Original image. (b) Reconstruction using only
lowest frequencies: Ω = {(k1, k2) : k21 + k22 ≤ 80}. (c) Prob

(
(k1, k2) ∈

Ω
)
∼ 1 (Uniform subsampling) (d) Ω comprised of frequencies in equispaced

radial lines. (e) Prob
(
(k1, k2) ∈ Ω

)
∝ (k21+k22+1)−1/2(f) Prob

(
(k1, k2) ∈

Ω
)
∝

(
max(|k1|, |k2|)+1

)−1 (g) Prob
(
(k1, k2) ∈ Ω

)
∝ (k21+k22+1)−1.

(h) Prob
(
(k1, k2) ∈ Ω

)
∝ (k21 + k22 + 1)−3/2. The relative reconstruction

error ‖f − f#
TV ‖2/‖f‖2 corresponding to each reconstruction is (b) .2932,

(c) .8229, (d) .4074, (e) .3192, (f) .2603, (g) .2537, and (h) .2463.

sampling points is less or equal to the degree of g, then in
general such reconstruction is impossible due to dimension
reasons. However, the situation becomes tractable if we make
a sparsity assumption. In order to introduce a suitable notion
of sparsity, we consider the orthonormal basis of Legendre
polynomials.

Definition 8: The (orthonormal) Legendre polynomials

P0, P1, . . . , Pn, . . .

are uniquely determined by the following conditions:

• Pn(x) is a polynomial of precise degree n in which the
coefficient of xn is positive,

• the system {Pn}∞n=0 is orthonormal with respect to the
normalized Lesbegue measure on [−1, 1]:

1

2

∫ 1

−1
Pn(x)Pm(x)dx = δn,m, n,m = 0, 1, 2, . . .

Since the interval [−1, 1] is symmetric, the Legendre polyno-
mials satisfy Pn(x) = (−1)nPn(−x). For more information
see [Szego].

An arbitrary real-valued polynomial g of degree N − 1 can
be expanded in terms of Legendre polynomials,

g(x) =

N−1∑
j=0

cjPj(x), x ∈ [−1, 1]

with coefficient vector c ∈ RN . The vector is s-sparse if
‖c‖0 ≤ s. Given a set of m sampling points (x1, x2, . . . , xm),
the samples yk = g(xk), k = 1, . . . ,m, may be expressed
concisely in terms of the coefficient vector according to

y = Φc,

where φk,j = Pj(xk). If the sampling points x1, . . . , xm are
random variables, then the matrix Φ ∈ Rm×N is exactly the
sampling matrix corresponding to random samples from the
Legendre system {Pj}Nj=1. This is not a bounded orthonormal
system, however, as the Legendre polynomials grow like

|Pn(x)| ≤ (n+ 1/2)1/2, −1 ≤ x ≤ 1.

Nevertheless the Legendre system does have bounded local
coherence. A classic result [szego] follows.

Proposition 9: For all n > 0 and for all x ∈ [−1, 1],

|Pn(x)| < κ(x) = 2π−1/2(1− x2)−1/4.

here, the constant is 2 π−1/2 cannot be replaced by a smaller
one.
Indeed, κ(x) is a square integrable function proportional to
the Chebyshev measure π−1(1 − x2)−1/2. We arrive at the
following result for Legendre polynomial interpolation as a
corollary of Theorem 3.

Corollary 10: Let x1, . . . , xm be chosen independently at
random on [−1, 1] according to the Chebyshev measure
π−1(1− x2)−1/2dx. Let Ψ be the matrix with entries Ψk,j =√
π/2(1− x2k)1/4Pn(xk). Suppose that

m & s log3

Consider the matrix A ∈ Cm×N whose rows are independent
random vectors(ψj(Xk)) drawn from the measure µ. If

m & B2s log3(s) log(N), (V.1)

for some s & log(N), then the following holds with probabil-
ity exceeding 1−N−C log3(s). Let D ∈ Cm×m be the diagonal
matrix with entries dk,k = 1

µ(Xk)
. For each x ∈ CN , given

noisy measurements y = Ax +
√
mη with ‖Dη‖2 ≤

√
mε,

the approximation

x# = arg min
u∈CN

‖u‖1 subject to ‖DAu−Dy‖2 ≤
√
mε

satisfies the error guarantee

‖x− x#‖2 .
1√
s
‖x− xs‖1 + ε

where xs is the best s-term approximation to x.
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We illustrate exact recovery of a Legendre sparse poly-
nomial from randomly sampled points from the Chebyshev
measure.

In fact, more general theorems exist: the Chebyshev mea-
sure is a universal sampling strategy for interpolation with any
set of orthogonal polynomials [5].

An extension to the setting of interpolation with spherical
harmonics can be found in [5], [?].

VI. CONCLUSION

Here we summarize local coherence sampling, and demon-
strate its power for generalized sparse recovery results in
compressed sensing in two seemingly disparate settings - MRI
compressive imaging and Legendre polynomial interpolation.
Unlike incoherence-based results, local coherence sampling
gives a sampling strategy for fixed sparsity basis and fixed
sensing basis from which one can subsample; if the local
coherence function is square integrable and this integral de-
pends only mildly on the ambient dimension of the signal,
then stable and robust sparse recovery results for incoherent
sampling generalize to this setting. Several questions remain,
such as the optimality of the local coherence sampling, ex-
tensions to frames rather than orthonormal dictionaries, and
connections to designing sensing matrices via minimizing the
local coherence [?].
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