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Abstract—In Compressed Sensing (CS), measurements of a
sparse vector are obtained by applying a sensing matrix. With the
means of CS, it is possible to reconstruct the sparse vector from a
small number of such measurements. In order to provide reliable
reconstruction also for less sparse vectors, sensing matrices are
desired to be of low coherence. Motivated by this requirement, it
was recently shown that low coherence sensing matrices can be
obtained by Best Antipodal Spherical Codes (BASC) [1]. In this
paper, the noise-resilience of the Orthogonal Matching Pursuit
(OMP) used in combination with low coherence BASC-based
sensing matrices is investigated.

I. INTRODUCTION

In Compressed Sensing (CS), one is particularly interested
in the sparsest solution to an underdetermined system of M
linear equations:

Ax = b.

This is commonly interpreted as acquiring a sufficiently
k-sparse vector x ∈ RN from a small number of measure-
ments. A so called sensing matrixA ∈ RM×N describes these
measurements enlisted in b ∈ RM, where M is significantly
smaller than N .

However, for practical applications, measurement noise
will always be present. Therefore, an additional noise term
n ∈ RM consisting of Gaussian distributed elements with zero
mean is usually considered in the system model (e.g. [2]):

Ax+ n = b+ n.

There are multiple approaches to reconstruct the sparse
vector x̂ out of its measurements b, e.g. the Basis Pursuit (BP)
and Basis Pursuit De-Noising (BPDN) algorithms [3] based on
convex relaxation, or greedy algorithms like the Orthogonal
Matching Pursuit (OMP) [4].

The selection of suitable sensing matrices A is crucial
for a successful reconstruction. There are multiple properties
providing conditions on sensing matrices, e.g. the worst-case
coherence µ between columns of the sensing matrix [5]–[9].
The worst-case coherence is defined by the maximal absolute
value of the inner product between two distinct columns of A:

µ = max
i 6=j
|ai · aj | , (1)

where ai is the ith column. Motivated by these coherence
properties, the construction of Best Antipodal Spherical Codes

(BASC)-based sensing matrices with low worst-case coherence
has been proposed in [1].

Other approaches for guarantees on successful reconstruc-
tion utilize the Restricted Isometry Property (RIP) [10]. Nor-
malized Gaussian random matrices are often used as sensing
matrices, because they fulfill the RIP with high probabil-
ity [10]. Due to its combinatorial nature, the direct evaluation
of a matrix for its RIP is not tractable. However, Monte Carlo
experiments can be performed, which indicate the suitability
of BASC-based sensing matrices with respect to the RIP [1].

The reason for using BASC-based sensing matrices and
their construction is briefly summarized in Section II as given
in [1]. An analysis on the noise-resilience based on numerical
simulations is given in Section III. In Section IV, conclusions
are provided as well.

II. BASC-BASED SENSING MATRICES

A. Spherical Codes

Any finite set of M points placed on the surface of the
N -dimensional unit sphere centered at the origin of the N -
dimensional Euclidean space RN is called a spherical code
and denoted by Cs(N,M) [11]–[13]. A point of Cs(N,M) =
{sm}Mm=1 is determined by its corresponding code word sm =
(sm1, . . . , smn, . . . , smN ) representing a unit position vector
(|sm| = 1,m = 1, . . . ,M) whose components smn ∈ R
are the coordinates of the point in some reference Cartesian
coordinate system centered at the origin. Best Spherical Codes
(BSC), Cbs(N,M), are spherical codes which maximize the
minimal Euclidean (or angular) distance dml = |sm − sl| be-
tween any two points (or equivalently, minimize the maximal
inner product of the corresponding code words). All rotations
of a BSC are usually regarded as the same, therefore, a BSC is
characterized only by its distance distribution D = {dml}m<l.
For some specific (N,M) pairs (N > 2,M > N), the corre-
sponding BSC can be unique, however, there also exist (N,M)
pairs with more than one corresponding BSC (these BSCs have
different distance distributions but the same minimal distance).
For BASC, Cbas(N,M), the antipodal of each code word is
also a code word:

sm ∈ Cbas(N,M) ⇐⇒ −sm ∈ Cbas(N,M).

This property can be used in order to construct low coherence
sensing matrices [1].
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B. Sensing Matrices Based on Spherical Codes

The M = N code words of a spherical code Cs(N,M) can
be regarded as N columns of a sensing matrix A ∈ RM×N .
It can be easily shown that the squared Euclidean distance
between code words is proportional to their inner product.
However, the worst-case coherence is defined over the absolute
value of the inner product, see Equation (1). Consequently,
the search for sensing matrices with smallest worst-case
coherence µ is transformed into the search for BASC with
N =M and M = 2N . The M

2 non-antipodal code words of
Cbas(N,M) are the columns of the desired sensing matrix.

C. Obtaining BSC

The points of spherical codes can be considered as M
charged particles on the unit sphere acting in some field
of repelling forces [14]. Starting from any initial position,
such particles will move until the total potential energy of
the system approaches some local minimum. In any one of
these local minima the particles will settle causing a stable or
unstable equilibrium of mutual repelling forces. In [15], such
a generalized potential function, g(D), was introduced. For a
specific form of g(D) given in [16] by

g(D) =
∑
m<l

|sm − sl|−(ν−2), (2)

where ν ∈ N (ν > 2), it was shown that the global minimum
of g(D) is attained by a BSC if ν →∞.

As further summarized in [1], the set of fixed points of two
mappings can be regarded as the desired minima.

The first mapping F can be interpreted as collection of
effective forces fm acting on the code words sm of a spherical
code and is given by

F [Cs(N,M)] =
{
f
m
(Cs(N,M))

}M
m=1

=

fm =

∑
l 6=m

[(sm − sl)/|sm − sl|ν ]∣∣∣∣∣ ∑l 6=m [(sm − sl)/|sm − sl|ν ]

∣∣∣∣∣



M

m=1

or, with the underlined denotation of unit vectors u = u
|u| , byfm =

∑
l 6=m

sm − sl
|sm − sl|ν

=
∑
l 6=m

δml


M

m=1

. (3)

With the help of F a second mapping can be defined by

Φ[Cs(N,M)] =
{
sm + αf

m

}M
m=1

, (4)

where f
m

is given by (3) and α ∈ R. It is evident that the
mappings F and Φ have the same set of fixed points. For a
small enough “damping factor” α, the iterative process

Cs(N,M)(k+1) = Φ(Cs(N,M)(k)); k = 0, 1, . . . (5)

converges to one of the fixed points of the function Φ, and
consequently of F .

It was also shown [17] that, generally, for ν large enough,
all fixed points correspond to spherical codes whose minimal
distances are close enough to the minimal distance of corre-
sponding BSCs. Consequently by finding any fixed point using
(5) with ν large enough, the corresponding spherical code will
be very close to the best one.

D. Obtaining BASC

The construction of BSC can be easily adapted for BASC,
by considering additional antipodal points [1], leading to a new
mapping and new forces acting on the particles respectively:fm =

∑
l 6=m

[
sm − sl
|sm − sl|ν

+
sm + sl
|sm + sl|ν

]
M

m=1

. (6)

After the mapping (4) is applied, the antipodal points need to
be updated. The resulting algorithm is given in Fig. 1.

III. NOISE-RESILIENCE DETERMINED BY
NUMERICAL EVALUATIONS

The frequency of successful reconstruction1 is evaluated
over the sparsity of x, where the non-zero values are drawn
from a Gaussian distribution with zero mean and unit variance,
and over the Signal-to-Noise-(power)-Ratio SNR, with

SNR [dB] = 10 · log10


M∑
i=1

|bi|2

M∑
i=1

|ni|2

 ,

where bi and ni are the components of the corresponding
vectors b and n. For the construction of BASC-based matrices,
we used the initial values as given in the algorithm description
presented in Fig. 1. For the stopping criterion of the OMP
algorithm, we assume knowledge of the noise power: If the `2-
norm of the residual is less than the `2-norm of the noise plus
some small threshold

(
10−6

)
, the OMP algorithm will stop.

Our simulations indicate that OMP also performs well for an
overestimation of the noise power, therefore, the assumption
of a known noise power is not too restrictive. All simulations
have been performed in MATLAB R© [18].

Column-normalized random matrices with entries drawn
from a Gaussian distribution have also been considered for
comparisons. For the numerical evaluation, a version of each
matrix type has been computed. The frequency of successful
reconstruction has been determined over 7500 simulations.
The corresponding result is shown in Fig. 2 and Fig. 3 for
matrices of size 64 × 128. We repeated such simulations
for multiple different realizations of the discussed matrices,
however, the results did not show significant differences.

As it can be seen in Fig. 2 and Fig. 3, the signal must be
strong enough in order to allow sparse recovery by the OMP.
For high SNR levels, the sparsity is the dominating factor,

1The reconstruction is considered to be successful, if the condition
|x̂− x| < 10−3 is fulfilled.
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1: procedure BASC-BASED SENSING MATRIX(M,N )
2: N ←M
3: M ← 2N
4: αinit ← 0.9
5: ν ← 2
6: νmax ← 210

7: imax ← 105

8: ε← 10−10

9: Cs ← arbitrary . Random spherical code
10: Cas ← [Cs − Cs] . Antipodal spherical code
11: α← αinit
12: while ν < νmax do
13: FixedPoint← false
14: i← 0
15: while i < imax AND FixedPoint = false do
16: for m = 1 to M

2 do
17: fm ← 0
18: for l = 1 to M do
19: if l 6= m AND l 6= m+N then
20: fm ← fm +

sm−sl
|sm−sl|ν

21: end if
22: end for
23: end for
24: {sm}

M
2
m=1 ←

{
sm + αf

m

}M
2

m=1

25: {sm}Mm=1+M
2
← {−sm}

M
2
m=1

26: if all
∣∣∣f
m
− sm

∣∣∣ < ε then
27: FixedPoint← true
28: end if
29: i← i+ 1
30: end while
31: ν ← 2ν
32: α← αinit

ν−1
33: end while
34: return A← {sm}

M
2
m=1

35: end procedure

Fig. 1. The construction algorithm for BASC-based sensing matrices.

and it can be seen that the OMP performs better for BASC-
based matrices. Comparing the presented results with those
of [1], where a noise-free setting was investigated with a BP
algorithm, it is obvious that OMP gains more from the low
coherence BASC-based matrices than the BP algorithm.

In Fig. 4, the difference of the reconstruction frequencies
is shown in order to give a clearer comparison. Green areas
indicate that the OMP algorithm was more often successful
with the BASC-based matrix then with the normalized Gaus-
sian matrix. Red areas would indicate better results in favor of
the Gaussian matrices. Obviously, BASC-based matrices work
on average better with the OMP algorithm. However, it should
also be noted that this superiority is not always observable. For
certain individual realizations of the noise n and the sparse
vector x, the Gaussian matrices performed slightly better for
low SNR levels (10 − 20db). Taking more simulations into
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Fig. 2. Frequency of exact reconstruction for normalized Gaussian matrices
with M = 64 and N = 128.
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Fig. 3. Frequency of exact reconstruction for BASC-based matrices with
M = 64 and N = 128.

account, these differences average out cf. Fig. 4.

IV. CONCLUSIONS

The OMP algorithm clearly benefits more from the low
coherence of BASC-based sensing matrices than the BP al-
gorithm (cf. [1]).

For higher SNR levels, the lower coherence between the
columns of the BASC-based sensing matrices can be exploited
by the OMP, and therefore, a better performance can be
achieved in such situations.

However, no significant gain in performance can be ex-
pected for lower SNR regions.
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Fig. 4. Difference of the frequency of exact reconstruction between BASC-
based matrices and normalized Gaussian matrices. Both are of size M =
64 and N = 128. Green areas indicate better performance of BASC-based
matrices, whilst red areas show the same for Gaussian matrices.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful and constructive comments, and their
students Faisal Akram and Kotchapol Yoosooksawat for the
assisting simulations.

This work was supported by the German research coun-
cil Deutsche Forschungsgemeinschaft (DFG) under Grant
Bo 867/27-1.

REFERENCES

[1] D. E. Lazich, H. Zörlein, and M. Bossert, “Low coherence sensing
matrices based on best spherical codes,” in 9th International ITG
Conference on Systems, Communications and Coding 2013 (SCC’2013),
Munich, Germany, Jan. 2013.

[2] T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal
recovery with noise,” IEEE Transactions on Information Theory, vol. 57,
no. 7, pp. 4680 – 4688, Jul. 2011.

[3] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, pp.
33 – 61, 1998.

[4] Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proceedings of the 27 th Annual Asilomar Confer-
ence on Signals, Systems, and Computers, 1993, pp. 40 – 44.

[5] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 100,
no. 5, pp. 2197 – 2202, 2003.

[6] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle
and sparse representation in pairs of bases,” IEEE Transactions on
Information Theory, vol. 48, no. 9, pp. 2558 – 2567, Sep. 2002.

[7] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Transactions on Information Theory, vol. 49, no. 12, pp.
3320 – 3325, Dec. 2003.

[8] W. Bajwa, R. Calderbank, and S. Jafarpour, “Model selection: Two
fundamental measures of coherence and their algorithmic significance,”
in Information Theory Proceedings (ISIT), 2010 IEEE International
Symposium on, Jun. 2010, pp. 1568 – 1572.

[9] W. U. Bajwa, R. Calderbank, and D. G. Mixon, “Two are better
than one: Fundamental parameters of frame coherence,” Applied and
Computational Harmonic Analysis, vol. 33, no. 1, pp. 58 – 78, 2012.

[10] E. J. Candès and T. Tao, “Decoding by Linear Programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203 – 4215,
Dec. 2005.

[11] J. Conway and N. Sloane, Sphere Packings, Lattices, and Groups,
3rd ed., ser. Grundlehren der Mathematischen Wissenschaften. Springer,
1999.

[12] T. Ericson and V. Zinoviev, Codes On Euclidean Spheres, ser. North-
Holland Mathematical Library. Elsevier, 2001.

[13] N. J. A. Sloane, “Spherical codes: Nice arrangements of
points on a sphere in various dimensions.” [Online]. Available:
http://www2.research.att.com/ njas/packings/

[14] J. Leech, “Equilibrium of sets of particles on a sphere,” The Mathemat-
ical Gazette, vol. 41, no. 336, pp. 81 – 90, 1957.

[15] D. E. Lazic, “Class of block codes for the gaussian channel,” Electronics
Letters, vol. 16, no. 5, pp. 185 – 186, Feb. 1980.

[16] D. E. Lazic, T. Bece, and P. J. Krstajic, “On the construction of the best
spherical code by computing the fixed point,” in IEEE International
Symposium on Information Theory, Abstract of papers, Ann Arbor,
Michigan, USA, 1986, p. 74.

[17] D. E. Lazic, V. Senk, and R. Zamurovic, “An efficient numerical
procedure for generating best spherical arrangements of points,” in Pro-
ceedings of the International AMSE’88, Istanbul Conference “Modelling
and Simulation”, vol. 1C, Istanbul, Turkey, 1988, pp. 267 – 278.

[18] MathWorks R©, “MATLAB R© Version R2012b,” Natick, Massachusetts.
[Online]. Available: http://www.mathworks.com/

Proceedings of the 10th International Conference on Sampling Theory and Applications

471


