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Abstract—We propose a new analysis tool for signals, called
signature, that is based on complex wavelet signs. The complex-
valued signature of a signal at some spatial location is defined
as the fine-scale limit of the signs of its complex wavelet
coefficients. We show that the signature equals zero at sufficiently
regular points of a signal whereas at salient features, such
as jumps or cusps, it is non-zero. We establish that signature
is invariant under fractional differentiation and rotates in the
complex plane under fractional Hilbert transforms. We derive an
appropriate discretization, which shows that wavelet signatures
can be computed explicitly. This allows an immediate application
to signal analysis.

I. INTRODUCTION

The determination and classification of salient features, such
as jumps or cusps, is an important task in signal processing.
Classical approaches assume the interesting features of a signal
to be points of low regularity. In this context, local regularity
is measured in terms of the (fractional) differentiability order,
e.g., in the sense of local Hölder, Sobolev or Besov regularity.
Since such measures of smoothness only rely on the modulus
of wavelet coefficients [5], [9], they do not take into account
wavelet sign (or phase) information.

We may observe the shortcomings of a purely modulus
based approach by considering the two functions f(x) = sgnx
and g(x) = 2 log |x|. Since f and g are related by the Hilbert
transform, their wavelet coefficients are equal with respect
to the order of magnitude. Hence, the locally symmetric
singularity of f and the locally antisymmetric singularity of g
at the origin cannot be distinguished using a purely modulus-
based signal analysis.

We present a new signal analysis tool, which exclusively
uses the (complex) sign of the wavelet coefficients. To this
end, we investigate the fine scale limits of the signs of the
wavelet coefficients

σf(b) := lim
a→0

sgn 〈f, κa,b〉 := lim
a→0

〈f, κa,b〉
| 〈f, κa,b〉 |

, (1)

where κ is a complex-valued wavelet, a > 0 the scale, and
b ∈ R the location. The complex-valued quantity σf(b) is
called the signature of f at location b. We shall see that the
signature allows the local analysis of isolated salient features.
Hereby, the orientation of the signature within the complex
plane may be interpreted as an indicator of local symmetry
or antisymmetry. In particular, we show that the signature
is purely imaginary at a jump, whereas it is purely real at
a cusp. Moreover, the signature is invariant under fractional
Laplacians, i.e.,

σ((−∆)
r
2 f) = σf,

and it serves as a multiplier when acting on the fractional
Hilbert transform, in the sense that

σ(Hαf) = eiα
π
2 σf.

Therefore, the signature may be interpreted as being “dual”
to the local Sobolev regularity index, which is invariant
under fractional Hilbert transforms but shifts under fractional
Laplacians. We also establish that

sing supp f 6⊂ suppσf and suppσf 6⊂ sing supp f. (2)

Thus, a singularity in the classical sense need not coincide
with a signature-type singularity.

We further introduce a method to numerically compute
the signature of digital or sampled signals and validate the
theoretically developed concepts by numerical experiments.
There are some connections between our discretization and
phase congruency [6]. However, the approach undertaken in
[6] tends to favor unwanted large coefficients, which our
method avoids.

In this short communication, we omit the proofs which the
interested reader may find in [11].

II. DEFINITIONS AND BASIC PROPERTIES

We define the Fourier transform of a Schwartz function f ∈
S (R;C) by

F (f)(ω) := f̂(ω) :=

∫
R
e−iωxf(x)dx.

Likewise, we use the above notation for the usual extension
to the space of tempered distributions S ′(R;C). Furthermore,
F−1(f) and f∨ denote the corresponding inverse Fourier
transform of f . Let us introduce the class of complex wavelets
we need for the definition of signature.
Definition 1. We call a complex-valued non-zero function κ ∈
S (R;C) a signature wavelet if κ has a one-sided compactly
supported Fourier transform, i.e.,

supp κ̂ ⊆ [c, d], 0 < c < d <∞, (3)

and a non-negative frequency spectrum, i.e.,

κ̂(ω) ≥ 0, for all ω ∈ R. (4)

The wavelet system associated with a signature wavelet κ
is defined as the family of functions

κa,b(x) :=
1√
a
κ

(
x− b
a

)
, where a > 0 and b ∈ R.
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Fig. 1. The Meyer-type signature wavelet κ (left) and its Fourier transform
κ̂ (right).

An example of a signature wavelet is given by the inverse
Fourier transform of the (one-sided) Meyer window W, i.e.,

κ(x) = F−1(W )(x), (5)

where W is a Meyer window function (see Figure 1). We refer
to [11] for the definition of W .

Recall that the sign of a complex number z ∈ C is given
by

sgn z =

{
z
|z| , if z 6= 0,

0, if z = 0.

The signature of a signal is then defined as follows.

Definition 2. Let f ∈ S ′(R;R). If there exists a z ∈ C, such
that for all signature wavelets κ,

lim
a→0

sgn 〈f, κa,b〉 = z,

then we define the signature, σf , of f at b ∈ R by σf(b) := z;
otherwise, we set σf(b) := 0.

Note that the signature σf(b) is either equal to zero or is
a complex number of modulus 1. It follows directly from the
definition that the signature is invariant under translations, i.e.,

σ(Trf)(b) = (σf)(b− r) (6)

and under dilations, i.e.,

σ(Dνf)(b) = (σf)(νb). (7)

Here, the operator of translation by r ∈ R, Tr, and dilation
by ν ∈ R \ {0}, Dν , are defined by

Trf(x) := f(x− r) and Dνf(x) :=
1√
ν
f
(x
ν

)
,

respectively.

Since the Fourier transform of a signature wavelet κ van-
ishes in a neighborhood of the origin, we have that

〈p, κ〉 = 0, for any polynomial p. (8)

Therefore, the signature is well defined on the space of
tempered distributions modulo polynomials S ′/P, where P
denotes the space of all polynomials.

Our first result shows that a signal of polynomial growth
has signature equal to zero at a point where all derivatives are
equal to zero.
Theorem 3. Let f be a real-valued, locally integrable function
of polynomial growth. Further assume that f is smooth in a
neighborhood of b ∈ R. If f (k)(b) = 0, for all k ∈ N0, then
σf(b) = 0. In particular, suppσf ⊆ supp f.

An interesting consequence of Theorem 3 is the case when
f is locally a polynomial.
Corollary 4. Let f be a real-valued, locally integrable func-
tion of polynomial growth which is smooth in a neighborhood
of b ∈ R. If for some k0 ∈ N0, f

(k)(b) = 0, for all k ≥ k0,
then σf(b) = 0. In particular, if f coincides on an open set
U ⊂ R with a polynomial then σf(b) = 0, for every b ∈ U.

In the following example, we consider the unit step function.
Here, we can compute the signature at b = 0 explicitly. For
b 6= 0, we can apply Corollary 4.
Example 5. Let U be the unit step function defined by

U(x) :=

{
1, if x ≥ 0,

0, else.

For any signature wavelet κ, we have that

〈U, κa,0〉 =
〈
Û , (κa,0)∨

〉
=
i
√
a

π

∫
R

κ̂(aξ)

ξ
dξ. (9)

Hence, since κ̂ ≥ 0 and supp κ̂ ⊂ [0,∞), we obtain that
sgn 〈U, κa,0〉 = i, for all a > 0. For b 6= 0, we apply Corollary
4 yielding

σU(b) =

{
i, if b = 0,

0, else.

In our next example, we turn our attention to the signature
of a pure cusp-type singularity.
Example 6. For a fixed x0, consider the function

f(x) = |x− x0|γ , where γ > 0.

In [11] we proved that the wavelet signs are given by

σ f(x0) =


0, if γ ∈ 2N0,

−1, if γ ∈ ]0, 2[ ∪ ]4, 6[ ∪ . . . ,
+1, if γ ∈ ]2, 4[ ∪ ]6, 8[ ∪ . . . .

and σf(b) = 0, for b 6= x0.
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Next we show that, in general, a jump discontinuity induces
a purely imaginary signature at the jump location. A function
f has a jump (or step) discontinuity at b if the left-hand and
the right-hand limits f(b+) and f(b−) exist but are not equal.
Theorem 7. Let f be a real-valued, locally integrable function
of polynomial growth and let b ∈ R. If there exists a
neighborhood U of b such that f is continuous on U \ {b}
and has a jump discontinuity at b, then

σf(b) =

{
+i, if f(b−) < f(b+),

−i, if f(b−) > f(b+).
(10)

III. FRACTIONAL LAPLACIANS AND FRACTIONAL
HILBERT TRANSFORMS

We now investigate the behavior of signature under the
action of fractional powers of the Laplacian and the fractional
Hilbert transform. We shall see that the former leaves the
signature invariant whereas the latter acts on the signature by
a rotation in the complex plane.

We recall that fractional powers of the Laplacian (−∆)
r
2 ,

acting on f ∈ S ′(R)/P , are defined by

̂(−∆)
r
2 f := | • |r · f̂ , for r ∈ R. (11)

We show that the signature is invariant under (−∆)
r
2 . Again,

note that the signature is well defined for f ∈ S ′(R)/P.

Theorem 8. Let f ∈ S ′(R)/P and r ∈ R. Then,

σ
(
(−∆)

r
2 f
)

(b) = σf(b), for all b ∈ R.

Now we turn to the fractional Hilbert transform, which was
first introduced in [7]. We follow the definition given in [8].
For α ∈ R, the fractional Hilbert transform Hα is defined on
S ′(R)/P by

Ĥαf := e−iα
π
2 ·sgn(•) · f̂ . (12)

The following theorem shows that the fractional Hilbert trans-
form Hα acts on the signature as multiplication by eiα

π
2 , i.e.,

as a rotation in the complex plane.
Theorem 9. Let f ∈ S ′(R)/P and b ∈ R. Then

σ (Hαf) (b) = eiα
π
2 · σf(b). (13)

See Table I for a comparison between local Sobolev regular-
ity index of f, denoted by sf (cf. e.g. [4]), and the signature
under action of fractional Laplacians and fractional Hilbert
transforms.

The next two examples show that the points of non-zero
signature in general do not coincide with the singular support,
cf. (2).
Example 10. Consider the Weierstraß function (see e.g. [2])

f(x) =

∞∑
n=0

rn cos(tnx), where 0 < r < 1 and rt ≥ 1;

Sobolev regularity index Signature

Fractional s
(−∆)

r
2 f

= sf − r σ((−∆)
r
2 f) = σ(f)

differentiation

Fractional sHαf = sf σ(Hαf) = eiα
π
2 σ(f)

Hilbert transform

TABLE I
THE ACTION OF FRACTIONAL LAPLACIANS AND FRACTIONAL HILBERT

TRANSFORMS TO THE SOBOLEV REGULARITY INDEX sf AND THE
SIGNATURE σf.

As f is nowhere differentiable, it follows that sing supp f =
R. In [11], we have proved that σf(b) = 0, for all b ∈ R.
Therefore, we see that in general sing supp f 6⊆ suppσf.

Example 11. Let f = e−γx
2

be a Gaussian function with
γ > 0, and let κ be any signature wavelet. The singular support
of f is empty because f is smooth. On the other hand, as the
support of κ̂ is not empty,

〈f, κa,0〉 =
〈
f̂ , (κa,0)∨

〉
=
√
π

∫
R
e−

ω2

4γ (κa,0)∨(ω) dω > 0,

for all a > 0, implying that the signature equals 1 at b = 0.
Thus, in general, suppσf 6⊆ sing supp f. This shows that the
converse inclusion does not hold either.

IV. DISCRETIZATION AND NUMERICAL EXPERIMENTS

Now we turn our attention to the practical computation of
wavelet signs for sampled signals. In practice, only a finite
number of wavelet scales {aj}Nj=1 is available. Furthermore,
since we cannot test for convergence in (1) using every
signature wavelet, we have to choose a suitable signature
wavelet κ. Thus, we have to estimate the signature from the
finite set of samples {sgn

〈
f, κaj ,b

〉
}Nj=1.

To motivate our numerical approach, we begin by consid-
ering the following elementary convergence result for discrete
samples.

Proposition 12. Let f be a tempered distribution, {aj}j∈N a
sequence such that aj → 0, and b ∈ R. If σf(b) 6= 0, then

lim
N→∞

1

N

N∑
j=1

sgn
〈
f, κaj ,b

〉
= σf(b) (14)

for all signature wavelets κ.

Proposition 12 suggests the Cesàro limit (14) as an alterna-
tive to computing a non-zero signature σf(b). Note that σf(b)
is of modulus 1 and so is the Cesàro limit (14). Furthermore,
the elements of the Cesàro sequence

1

N

N∑
j=1

sgn
〈
f, κaj ,b

〉
, N ∈ N,
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Fig. 2. The discrete signature of a sample signal (top) taken from Wavelab [1]. We observe that the absolute value of the mean |wb| is large at the feature
points and much lower at the other points (center). The bottom plot depicts the discrete signature in phase angle representation. We see that the signature
clusters around the angles ±π

2
at the step-like points, and around π and 0 at cusp-like points. The threshold τ is set equal to 0.7 in this experiment. If we

choose a lower threshold parameter, say τ = 0.4, then the discrete signature would also catch the subtle feature points, like the small jump at x = 512.
However, in that case, we would require a non-maximum suppression to maintain the sharp localization of the pronounced feature points.

are not necessarily of modulus one, but their moduli converge
to 1 as N goes to infinity. This observation motivates the fol-
lowing procedure for the numerical estimation of the signature.

Given a finite number of scale samples {aj}Nj=1, we inter-
pret the mean of the sequence of discrete signs, given by

wb :=
1

N

N∑
j=1

sgn
〈
f, κaj ,b

〉
, (15)

as the N -th element of a Cesàro sequence. If the absolute
value |wb| is close to 1, we consider the Cesàro sequence as
being convergent, with sgnwb giving an estimate of σf(b).
On the other hand, a small value of |wb| suggests a vanishing
signature. More precisely, we consider |wb| to be non zero if
it exceeds some empirical threshold parameter τ between 0
and 1. Hence, we propose a discrete estimate σf(b) of the
signature of the form

σf(b) :=

{
sgnwb, if |wb| ≥ τ,
0, elsewhere.

(16)

In Figure 2, we see a numerical experiment based on
the above procedure. We observe that the modulus of the
mean |wb| is large at the salient points. Furthermore, we see
that the discrete signature is oriented towards the imaginary
axis for jump discontinuities and oriented to the real axis
for cusp singularities. This experiment illustrates that the
procedure proposed above yields a reasonable way to compute
the signature numerically. We used the Meyer-type signature

wavelet (5) and scale samples of the form aj = 2−
j
3 ,

with j = 0, 1, . . . , 15. The threshold parameter was set to
τ = 1

2

√
2 ≈ 0.7.

In [10], a generalization of the discrete signature to higher
dimensions is proposed, which can be applied directly for sign
based edge detection and edge analysis. That generalization
bases on monogenic wavelets similar to those of [3].
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