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Abstract—Sampling and perfect reconstruction of Finite rate
of innovation (FRI) signals, which are usually not bandlimited,
was introduced by Vetterli, Marziliano, and Blu [1].

A typical FRI reconstruction algorithm requires solving for
FRI signal parameters from a power-sum series. This in turn re-
quires annihilation filters and polynomial root-finding techniques.
These steps complicate the analysis of FRI signal reconstruction
in the presence of quantization. In this work, we introduce a
three-channel resistor-capacitor filter bank for the acquisition and
reconstruction of FRI signals consisting of stream of Diracs and
nonuniform splines. The effect of quantization error is derived for
our three-channel filter-bank scheme. However, the sampling-rate
required for our scheme is larger than the minimum sampling-
rate of FRI signals.

I. INTRODUCTION

Parametric signals with finite degrees of freedom per unit
time can be nonbandlimited [1]. E.g., for an integer K0 > 0

x(t) =

K0−1∑
k=0

ckδ(t− tk), ck, tk ∈ R, (1)

for all 0 ≤ k ≤ K0 − 1 is a parametric
signal specified by the 2K0 real-valued parameters
{(t0, c0), (t1, c1), . . . , (tK0−1, cK0−1)}. However, the Fourier
bandwidth of x(t) is infinite. If a signal is formed by the
superposition of shifted and scaled versions of a known
pulse, then the shifts and amplitudes of this pulse constitute
its degrees of freedom rather than its Fourier bandwidth.
Parametric signal class is large and it includes piecewise
polynomials and non-uniform splines [1]. Signals, which can
be specified by a finite number (or finite rate) of parameters
are finite rate of innovation (FRI) signals. For an FRI signal,
the degrees of freedom per unit time is the fundamental
quantity to be used for determining the sampling rate [1].

The stream of Dirac delta signals in (1) has been widely
studied due to its applicability in biomedical signal modeling,
ultra-wideband communications, and global positioning sys-
tem (e.g., see [2], [3]). Typically a power sum series has to be
solved to obtain the parameters of an FRI signal. The solution
involves annihilation filter and polynomial root finding [1], [4],
[5], [6]. This approach is not amenable to quantization error
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analysis [7]. To the best of our knowledge, closed-form upper-
bounds for quantization error in FRI signals are not known.

y(nTs)
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x(t) y(t)
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Fig. 1. The FRI signal acquisition setup of Vetterli et al. [1] is
illustrated. The filter h(t) spreads the spikes thereby making y(t)
suitable for sampling. Typically h(t) is a Gaussian or a sinc-filter.

The acquisition filter h(t) in Fig. 1 is a design choice.
Consider FRI signals consisting of a stream of Dirac delta
signals or nonuniform splines. For these FRI signals, a new
sample acquisition setup consisting of a three channel resistor-
capacitor (RC) filter-bank is proposed in this work. For this
setup, closed-form upper bounds on error in FRI signal param-
eters due to quantization will be derived. Two channel or multi-
channel resistor-capacitor filter banks for the reconstruction
of stream of Diracs or other FRI signals, respectively, have
been considered in the past for perfect reconstruction [8],
[9]. However, these works do not study quantization and a
detailed scheme for the sampling of nonuniform splines have
not been suggested in them. The FRI signal reconstruction
method proposed in this work does not involve a power sum
series. This simplification, though, comes at a faster sampling
rate than the minimum required by FRI signal sampling. 1

Organization: Section II describes the signal model and our
acquisition filter. Related work is reviewed in Section III. Per-
fect reconstruction and quantized reconstruction are discussed
in Section IV. Conclusions are presented in Section V.

II. MODELING ASSUMPTIONS

A finite-duration FRI signal is completely characterized by
a finite number of parameters. Within the wide class of FRI
signals, we consider the following signal model in this work,

x(t) =

K0−1∑
k=0

ck,0δ(t− tk,0) + . . .+

Kp−1∑
k=0

ck,pδ
(p)(t− tk,p)

(2)

1See C1 in Sec. IV-A for the exact condition.
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where δ(r)(t) denotes the rth order derivative of the Dirac
delta signal. The time epochs tk,j ̸= tl,i if i ̸= j. Apart
from modeling neural signals, it is also known that non-
uniform splines can be reduced to the form of (2) after
differentiation operations [1]. Due to space constraints, the
signal model will be limited to stream of Dirac delta signal
and its first derivative. The analysis extends in an analogous
fashion to stream of Dirac delta signal and its higher order
derivatives. Denote xm

l := (xl, xl+1, . . . , xm) for m > l.
Given this signal, the parameters {(ci)Ki−1

0 , (ti)
Ki−1
0 }p−1

i=0 are
to be (approximately) obtained from a set of sampled and
quantized values obtained after filtering x(t).

An ideal first-order RC filter will be used to facilitate the
sampling of FRI signal in (2). Its impulse response is

hrc(t) = e−λtu(t),

where λ > 0 is the decay-rate and u(t) is the unit-step
function. This filter is causal and can be implemented by a
circuit consisting of single resistance of value R and single
capacitor of value C. The decay-rate is λ = 1/(RC). This
passive filter is one of the simplest to implement in practice.

III. PRIOR ART

Sampling and perfect reconstruction of FRI signals with
Gaussian and ideal lowpass acquisition filters was recently
studied by Vetterli, Marziliano, and Blu [1]. These filters
transform the problem of unknown Dirac delta signal (or its
derivative) locations tK−1

0 to that of frequency estimation of a
power sum series; the frequencies are estimated using annihila-
tion filters. This method works well for perfect reconstruction.

FRI signal in (1) has been studied in application areas such
as biomedical signal processing, ultra wideband communica-
tions, and global positioning system (e.g., see [2], [3]). Quanti-
zation noise analysis of FRI sampling and reconstruction has
not been addressed [1], [5], [6] since the annihilation filter
and polynomial root finding technique are complicated. Some
quantization and oversampling results pertaining to FRI signal
sampling are known in the literature [10]. Any closed-form
error analysis due to quantization is mostly unsolved to the
best of our knowledge.

In the presence of statistical sensing noise, the estimation of
FRI signal parameters has also been studied in the literature. A
qualitative analysis related to the numerical stability of some
of these algorithms is presented in [5]. Related work includes
the derivation of Cramer-Rao lower bounds for estimated poles
of the power-sum series under additive Gaussian noise in [11].
This analysis, however, is restricted to a maximum of two delta
functions.

IV. FRI SIGNAL RECONSTRUCTION AND QUANTIZATION

Our sampling scheme for FRI signals in (2) is presented
in two parts. Perfect reconstruction is presented first and
quantization analysis is discussed in the later section.

A. Perfect reconstruction of Dirac delta signals with RC filters

Conceptually, a term of the form ckδ
(p)(t − tk), with p =

0, 1 has three degrees of freedom, namely, the constant ck, the
unknown order p, and the time instant tk. Three RC-filters in
parallel will be used to identify these three parameters. The
general signal model is given by

x(t) =

K0−1∑
k=0

ck,0δ(t− tk,0) +

K1−1∑
k=0

ck,1δ
(1)(t− tk,1). (3)

where the constants K0,K1 are positive integers. The time
epochs tk,j ̸= tl,i if i ̸= j. This signal class is obtained when
piecewise linear signals are subjected to two differentiation
operations. Consider the acquisition system shown in Fig. 2.
There are three parallel RC filters with distinct decay-rate
λ1, λ2, and λ3. These filter outputs will be used to reconstruct
the three degrees of freedom associated with every Dirac delta
signal or its derivative present in x(t).

Ts

y2(nTs)y2(t)

Ts

hrc,2(t)

y3(nTs)
hrc,3(t)

y3(t)

Ts

x(t)
hrc,1(t)

y1(t) y1(nTs)

Fig. 2. The three RC filters in parallel can be used to sample the signal
in (3), provided Ts satisfies Condition C1 and λ1, λ2, λ3 are distinct.

Consider δ(1)(t − t0) as the input to an RC filter. Since
delay and differentiation are linear time-invariant operations,
the output of an RC filter with decay-rate λ1 is given by

dh(t− t0)

dt
=

d
dt

[exp(−λ1(t− t0))u(t− t0)]

= δ(t− t0)− λ1 exp[−λ1(t− t0)]u(t− t0). (4)

Observe that, except at t = t0 and a proportionality constant
dependent on λ1, these outputs are the same as the response
of an RC filter to a Dirac delta signal at t = t0. Define T :=
{t0,0, . . . , t0,K0−1, t1,0, . . . , t1,K1−1}. The set T consists of all
the points where Dirac delta signal or its derivative is present
in the signal x(t). Using linearity and the derivation in (4), it
is straightforward to show that if x(t) in (3) is the input to
the system in Fig. 2, the output of the first filter is given by

y1(t) =

K0−1∑
k=0

ck,0h1(t− tk,0) +

K1−1∑
k=0

ck,1(−λ1)h1(t− tk,1).

The elements of T will be reordered for clarity in the
analysis. Reorder the elements of set T in an ordered set
{t0, t1, . . . , tK−1} where K = K0K1. Due to re-ordering,
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ti = tli,ji for some unique (li, ji) pair for each i. Thus,

y1(t) =
K−1∑
k=0

ckh1(t− tk) = e−λ1t
K−1∑
k=0

cku(t− tk)

for t /∈ T , where ck = clk,jk(−λ1)
jk .2 The parameter ck

depends on λ1. The decay-rate λ1 is known but clk,jk and jk
are parameters to be obtained or approximated. After sampling
at nTs and multiplication by eλ1nTs , the following readings
are obtained provided nTs /∈ T :

eλ1nTsy1(nTs) =
K−1∑
k=0

cke
λ1tku(nTs − tk). (5)

Now the following condition is assumed:

C1: Ts < min
i
{ti − ti−1} and nTs ̸= ti for any i and n.

Under Condition C1, the different levels of the piecewise con-
stant discrete-time signal in (5) reveal the product ckeλttk =
clk,jk(−λ1)

jk exp(λ1tlk,jk) one by one for different values of
k = 0, 1, . . . ,K−1. Under Condition C1, there is at least one
sample between consecutive shifted Dirac or its derivative in
x(t); thus, for each Dirac or its derivative at ti an integer
Ni ∈ Z exists such that

eλ1NiTsy1(NiTs)− eλ1Ni−1Tsy1(Ni−1Ts)

= cli,ji(−λ1)
jieλ1tli,ji . (6)

The value of λ1 is known. The following result of interest is
stated and proved next. All the logarithms have base e.

Proposition 4.1: Assume that three RC-filters in parallel
operate with distinct (λ1, λ2, λ3) and sampling rate Ts satisfies
Condition C1. Then there exist indices Ni, i = 0, 1, . . . ,K−1
such that eλ1NiTsy1(NiTs) =

∑i
k=0 ck exp(λ1tk). Define

dm(i) := eλmNiTsym(NiTs) − eλmNi−1Tsym(Ni−1Ts) for
m = 1, 2, 3. Choose (λ2)

2 = λ1λ3. Then the parameters of
x(t) in (3) are given by the following set of equations,

tli,ji =
1

λ1 + λ3 − 2λ2
log

[
d1(i)d3(i)

d22(i)

]
, (7)

ji =
1

log
(

λ1

λ2

) [log [d1(i)
d2(i)

]
+ (λ2 − λ1)tli,ji

]
, (8)

and ci = (−λ1)
jicli,ji =

d1(i)

eλ1tli,ji
. (9)

Proof: The existence of Ni has been argued while deriv-
ing (6); it follows from the definition of the unit-step function
and (5). In the following equations, m takes the values 1, 2, 3.
The output of the three channels in Fig. 2 are given by,

ym(NiTs) = e−λmNiTs

i∑
k=0

cke
λmtk ,

or eλmNiTsyj(NiTs) =

i∑
k=0

cke
λmtk .

2At locations mentioned in this set T , Dirac delta signal and its derivatives
are present.

Upon successive subtraction, we get

dm(i) = eλmNiTsym(NiTs)− eλmNi−1Tsym(Ni−1Ts)

= ck exp(λmtk). (10)

The equations in (7), (8), and (9) follow from (10) by
simple algebraic manipulations and using λ2

2 = λ1λ3. Since
λ1, λ2, λ3 are in geometric progression. The arithmetic mean
of two unequal numbers is great than their geometric mean.
Hence, λ1+λ3 > 2λ2. This ensures that the expression in (7)
is well defined.

B. Quantization error in RC filter sampling scheme

In this section, it is assumed that ym(nTs) values are quan-
tized. Bounds on approximated parameters obtained through
Proposition 4.1 will be derived. To work with scalar quantizers
and maximum pointwise error, it is assumed that |ym(t)| is
bounded. Without loss of generality, |ym(t)| ≤ 1 for all t ∈ R.
A uniform scalar quantizer will be assumed for analysis, where
the quantizer precision is L-bits [12]. Let ŷm(nTs) be the
quantized value of ym(nTs). Define em(nTs) := ŷm(nTs) −
ym(nTs) Then, the following pointwise bound

|em(nTs)| = |ŷm(nTs)− ym(nTs)| ≤ 2−L

holds for uniform scalar quantizer [12]. With quantized sam-
ples ŷm(nTs), the approximate variables dm(i) have an error

|d̂m(i)− dm(i)|
= |eλmNiTsem(NiTs)− eλmNi−1Tsem(Ni−1Ts)|.

The FRI signal parameters can be approximated as follows:

t̂li,ji =
1

λ1 + λ3 − 2λ2
log

[
d̂1(i)d̂3(i)

d̂22(i)

]
, (11)

ĵi =
1

log
(

λ1

λ2

) [log( d̂1(i)

d̂2(i)

)
+ (λ2 − λ1)t̂li,ji

]
, (12)

and ĉli = (−λ1)
ĵi ĉli,ji =

d̂1(i)

exp(λ1t̂li,ji)
. (13)

Note that d̂m(NiTs) = ci(m)eλmti + em(NiTs)e
λmNiTs −

em(Ni−1Ts)e
λmNi−1Ts . The constant ci depends on m

through λm for m = 1, 2, 3. The main result is stated next.
Theorem 4.1: Let ŷm(nTs) be available with Ts satisfying

Condition C1 and m = 1, 2, 3. Let λ1, λ2, λ3 be distinct.
Define the approximations for FRI signal parameters as in
(11) and (13). Denote ∆ := λ1 + λ3 − 2λ2. Then,

|t̂i − ti| ≤ − 4

∆
min
m

log

[
1− 2−L(1 + eλmTs)

|ci(m)|

]

and
∣∣∣∣ ĉi(m)− ci(m)

ci(m)

∣∣∣∣
≤
[
1 +

2−L(1 + eλmTs)

|ci(m)|

] [
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]−4λm
∆

− 1,

where m∗ is obtained by maximization as discussed in proof.
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Proof: The proof omits algebraic steps for brevity. Define

βm,i :=
em(NiTs)e

λm[NiTs−ti] − em(Ni−1Ts)e
λm[Ni−1Ts−ti]

ci(m)
.

Then

|βm,i| ≤
2−L|eλm[NiTs−ti]|+ 2−L|eλm[Ni−1Ts−ti]|

|ci(m)|

≤ 2−L(1 + eλmTs)

|ci(m)|
(14)

since Ni can be chosen such that 0 < NiTs − ti < Ts. Using
quantized estimates d̂m(i), we get

d̂1(NiTs)

d̂2(NiTs)
=

ci(1)

ci(2)
e(λ1−λ2)ti

[
1 + β1,i

1 + β2,i

]
.

Similarly,

d̂3(NiTs)

d̂2(NiTs)
=

ci(3)

ci(2)
e(λ3−λ2)ti

[
1 + β3,i

1 + β2,i

]
.

Note that ci(1)ci(3) = (ci(2))
2. Therefore,

d̂1(NiTs)d̂3(NiTs)

d̂22(NiTs)
= e(λ1+λ3−2λ2)ti

[
(1 + β1,i)(1 + β3,i)

(1 + β2,i)2

]
.

Taking logarithms on both sides, we get

|t̂i − ti| =
1

∆

∣∣∣∣log [ (1 + β1,i)(1 + β3,i)

(1 + β2,i)2

]∣∣∣∣ .
≤ −4

∆
min
m

log

[
1− 2−L(1 + eλmTs)

|ci(m)|

]
.

=
−4

∆
log

[
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]
The last inequality utilizes the inequality | log(1 + x)| ≤
− log(1 − x0) for all |x| ≤ x0. For very large values of
L, note that the error is decaying exponentially in L as
log(1− x) ≈ −x for very small values of x.

The error in ĉi(m) will be derived now. From the definition
of βm,i

ĉi(m) = ci(m)eλm(ti−t̂i)[1 + βm,i].

or
ĉi(m)− ci(m)

ci(m)
= eλm(ti−t̂i)[1 + βm,i]− 1.

Thus,∣∣∣∣ ĉm,i − cm,i

cm,i

∣∣∣∣ = |eλm(ti−t̂i)[1 + βm,i]− 1|

≤ |eλm(ti−t̂i) − 1|+ |βm,ie
λm(ti−t̂i)|

Now we note that |eθ − 1| ≤ e|θ| − 1 for any θ. Therefore,∣∣∣∣ ĉi(m)− ci(m)

ci(m)

∣∣∣∣
≤ eλm|ti−t̂i| − 1 + |βm,i|eλm|ti−t̂i|

≤ (1 + |βm,i|)
[
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]−4λm/∆

− 1.

Substituting the upper-bound on βm,i from (14),∣∣∣∣ ĉi(m)− ci(m)

ci(m)

∣∣∣∣
≤
[
1 +

2−L(1 + eλmTs)

|ci(m)|

] [
1− 2−L(1 + eλm∗Ts)

|ci(m∗)|

]−4λm
∆

− 1.

As for t̂i, if L is very large, then the error in ĉi(m) is
proportional to 2−L.

It must be noted that ĵi is either 0 or 1. For large-enough
L, this parameter can be recovered exactly since ji is discrete.
Due to space constraints the derivations for ĵi and condition
on L under which it can be recovered exactly is omitted.

V. CONCLUSIONS

In this work, a new sample acquisition method for sampling
and reconstruction of an important class of FRI signals was
explored. The new method, consisting of RC filters in parallel,
studied in this work does not require solving a power-sum
series, and ensuing annihilation filters or polynomial root
finding, to obtain the FRI signal parameters. The effect of
quantization error, in terms of upper bound on parameter
reconstruction error, was addressed for our setup. Quantization
error bounds are not available with the power-sum series
approach. If L bits are used for quantizing each sample, then
the reconstruction error was shown to be eventually decreasing
as 2−L. However, the sampling-rate required for our scheme
is larger than the minimum sampling-rate of FRI signals.

REFERENCES

[1] M. Vetterli, P. Marziliano, and T. Blu, “Sampling Signals with Finite
Rate of Innovation,” IEEE Trans. Signal Proc., vol. 50, no. 6, pp. 1417–
1428, June 2002.

[2] Y. Hao, P. Marziliano, M. Vetterli, and T. Blu, “Compression of ECG as
a signal with finite rate of innovation,” in Proceedings of the 27th Annual
International Conference in Engineering Medicine Biology Society.
New York, NY: IEEE-EMBS, 2006, pp. 7564–7567.
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