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Abstract—This paper introduces a subspace segmentation and
data clustering method for a set of data drawn from a union of
subspaces. The proposed method works perfectly in absence of
noise, i.e., it can find the number of subspaces, their dimensions,
and an orthonormal basis for each subspace. The effect of noise
on this approach depends on the noise level and relative positions
of subspaces. We provide a performance analysis in presence of
noise and outliers.

I. INTRODUCTION

The goal of subspace clustering is to identify all of the
subspaces that a set of data W = {w1, ..., wN} ∈ RD is drawn
from and assign each data point wi to the subspace it belongs
to. The number of subspaces, their dimensions, and a basis
for each subspace are to be determined even in presence of
noise, missing data, and outliers. In some subspace clustering
problems, the number M of subspaces or the dimensions of
the subspaces {di}Mi=1 are known. A number of approaches
have been devised to solve the problem above or some of its
special cases. They are based on sparsity methods [1], [2], [3],
[4], algebraic methods [5], [6], iterative and statistical methods
[7], [8], [9], [10], [11], [12], and spectral clustering methods
[2], [3], [13], [14], [15], [16], [17], [18], [19].

In this work, we develop an algebraic method for solving
the general subspace segmentation problem for noiseless data.
For the case where all the subspaces are four dimensional,
Gear observed, without proof, that the reduced echelon form
can be used to segment motions in videos [20]. In this paper,
we develop this idea and show that the reduced row echelon
form can completely solve the subspace segmentation problem
in its most general version for noiseless data. For noisy
data, the reduced echelon form method does not work, and
a thresholding must be applied. The effect of the noise on the
reduced echelon form method depends on the noise level and
the relative positions of the subspaces.

A. Non-Linear Approximation Formulation

When M is known, the subspace segmentation problem,
for both the finite and infinite dimensional space cases, can be
formulated as follows:

Let B be a Banach space, W = {w1, . . . , wN} a finite set of
vectors in B. For i = 1, . . . ,M , let C = C1×C2×· · ·×CM be
the cartesian product of M family Ci of closed subspaces of
B each containing the trivial subspace {0}. Thus, an element

S ∈ C is a sequence {S1, . . . , SM} of M subspaces of B with
Si ∈ Ci. An example for finite dimensions is when B = RD
and C is the family of all subspaces of RD of dimensions
less than or equal to D. An example for infinite dimensions is
when B = L2(RD) and C is a family of closed, shift-invariant
subspaces of L2(RD) that are generated by finite generators.

Problem 1.

1) Given a finite set W ⊂ B, a fixed p with 0 < p ≤ ∞,
and a fixed integer M ≥ 1, find the infimum of the
expression

e(W,S) :=
∑
w∈W

min
1≤j≤M

dp(w, Sj),

over S = {S1, . . . , SM} ∈ C, and d(x, y) := ‖x− y‖B.
2) Find a sequence of M -subspaces So = {So1 , . . . , SoM} ∈
C (if it exists) such that

e(W,So) = inf{e(W,S) : S ∈ C}. (I.1)

In the presence of outliers, it is shown that p = 1 is a good
choice [21] and a good choice for light-tailed noise is p = 2.
The necessary and sufficient conditions for the existence of a
solution when p = 2 and B is a Hilbert space can be found in
[22].

Definition 1. For 0 < p ≤ ∞, a set of closed subspaces C of
a Banach space B has the Minimum Subspace Approximation
Property p-(MSAP) if for every finite subset W ⊂ B there
exists an element S ∈ C that minimizes the expression
e(W, S) =

∑
w∈W dp(w, S) over all S ∈ C.

Under the assumption that each family of subspaces Ci
satisfies p-(MSAP), problem 1 has a minimizer [23]:

Theorem 1. If for each i = 1, . . .M , Ci satisfies p-(MSAP),
then Problem 1 has a minimizing set of subspaces for all finite
sets of data.

Theorem 1 suggests an iterative search algorithm for the
optimal solution So. Obviously, this solution can be obtained
by Algorithm 1. This algorithm will work well if a good initial
partition is chosen. Otherwise, the algorithm may terminate in
a local minimum instead of the global minimum.
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Algorithm 1 Optimal Solution So

1: Pick any partition P ∈ P(W)
2: For each subset Wi in the partition P find the subspace
Soi (P ) ∈ Ci that minimizes the expression e(Wi, S) =∑
w∈Wi

dp(w, S)

3: while
M∑
i=1

e(Wi, S
o
i (P )) > e(W,So(P )) do

4: for all i from 1 to M do
5: Update Wi = {w ∈ W : d(w, Soi (P )) ≤

d(w, Sok(P )), k = 1, . . . ,M}
6: Update Soi (P ) = argmin

S∈Ci

e(Wi, S)

7: end for
8: Update P = {W1, . . . ,WM}
9: end while

10: So = {So1(P ), . . . , SoM (P )}

II. SUBSPACE SEGMENTATION - NOISELESS CASE

In this section we consider the problem in which a set of
vectors W = {w1, . . . , wN} are drawn from a union U =⋃
i∈I Si of M subspaces Si ∈ RD of dimension di. In order

to find the M subspaces from the data set W it is clear that
we need enough vectors W = {w1, . . . , wN}. In particular for
the problem of subspace segmentation, it is necessary that the
set W can be partitioned into M sets W = {W1, . . . ,WM}
such that spanWi = Si, i = 1, . . . ,M . Thus, we need to
assume that we have enough data for solving the problem. In
particular, we assume that any k ≤ d vectors drawn from a
subspace S of dimension d are linearly independent, and we
make the following definition.

Definition 1. Let S be a linear subspace of RD with dimension
d. A set of data W drawn from S ⊂ RD with dimension d
is said to be generic if (i) |W| > d, and (ii) every d vectors
from W form a basis for S.

Another assumption that we will make is that the union of
subspaces U =

⋃
i∈I Si from which the data is drawn consists

of independent subspaces:

Definition 2. (Independent Subspaces) Subspaces {Si ⊂
RD}ni=1 are called independent if dim(S1 + · · · + Sn) =
dim(S1) + · · ·+ dim(Sn).

Definition 3. Matrix R is said to be the binary reduced row
echelon form of matrix A if all non-pivot column vectors are
converted to binary vectors, i.e., non-zero entries are set to
one.

The following theorem suggests a very simple yet effective
approach to cluster the data points. The proofs of the following
Theorems can be found in [23].

Theorem 2. Let {Si}Mi=1 be a set of non-trivial linearly
independent subspaces of RD with corresponding dimensions
{di}Mi=1. Let W = [w1 · · ·wN ] ∈ RD×N be a matrix whose
columns are drawn from

⋃M
i=1 Si. Assume the data is drawn

from each subspace and that it is generic. Let Brref(W) be
the binary reduced row echelon form of W. Then

1) The inner product 〈ei, bj〉 of a pivot column ei and a
non-pivot column bj in Brref(W) is one, if and only
if the corresponding column vectors {wi, wj} in W
belong to the same subspace Sl for some l = 1, . . . ,M .

2) Moreover, dim(Sl) = ‖bj‖1, where ‖bj‖1 is the l1-norm
of bj .

3) Finally, wp ∈ Sl if and only if bp = bj or 〈bp, bj〉 = 1.

The data W can be partitioned into M clusters
{W1, . . . ,WM}, such that spanWl = Sl. The clusters can be
formed as follows: Pick a non-pivot element bj in Brref(W),
and group together all columns bp in Brref(W) such that
〈bj , bp〉 > 0. Repeat the process with a different non-pivot
column until all columns are exhausted.

III. SUBSPACE SEGMENTATION - NOISY CASE

In practice the data W is corrupted by noise. In this case, the
Reduced Row Echelon Form (RREF)-based algorithm cannot
work, even under the assumption of Theorem 2, since the noise
will have two effects: 1) The rank of the data corrupted by
noise W + η ⊂ RD becomes full; i.e., rank(W + η) = D;
and 2) Even under the assumption that r = D, none of the
entries of the non-pivot columns of rref(W+ η) will be zero.
One way of circumventing this problem, is to use the RREF-
based algorithm in combination with thresholding to set to
zero those entries that are small. The choice of the threshold
depends on the noise characteristics and the position of the
subspaces relative to each other.

In general, dim(
∑M
i=1 Si) = rank(W) ≤ D, where D is

the dimension of the ambient space RD. After projection of
W, the new ambient space is isomorphic to Rr, where r =
rank(W), and we may assume that rank(W) = D. Without
loss of generality, let us assume that W =

[
A B

]
where

the columns of A form basis for RD, i.e., the columns of A
consist of di linearly independent vectors from each subspace
Si, i = 1, . . . ,M . Let W̃ = W+N be the data with additive
noise. Then the reduced echelon form applied to W̃ is given
by rref(W̃) =

[
I Ã−1B̃

]
. Let bi and b̃i denote the columns

of B and B̃ respectively, ei = Ã−1b̃i − A−1bi, ∆ = Ã − A,
and νi = b̃i − bi. Let σmin denote the smallest singular value
of A, then if ||∆|| ≤ σmin(A), we get

‖ei‖2 ≤
‖νi‖2

σmin(A)
+

‖∆‖
σ2
min(A)

(
1

1− ‖∆‖
σmin(A)

)
(‖bi‖2 + ‖νi‖2),

(III.1)

where ‖ · ‖ denotes the operator norm ‖ · ‖`2→`2 . Unless
specified otherwise, the noise N will be assumed to consist
of entries that are i.i.d. N (0, σ2) Gaussian noise with zero
mean and variance σ2. For this case, the expected value
of ‖∆‖ can be estimated by E‖∆‖ ≤ C

√
Dσ [24]. Note

that to estimate the error in (III.1) we still need to estimate
σmin(A). This singular value depends on the position of
the subspaces {Si}Mi=1 relative to each other which can be
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measured by the principle angles between them. The principle
angles between two subspaces F ,G, can be obtained using any
pair of orthogonal bases for F ,G as described in the following
Lemma [25]:

Lemma 1. Let F and G be two subspaces of RD with p =
dim(F) ≤ dim(G) = q. Assume that QF ∈ RD×p and QG ∈
RD×q are matrices whose columns form orthonormal bases
for the subspaces F and G. If 1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0
are the singular values of QtFQG , then the principle angles
are given by

θk = arccos(σk) k = 1, . . . , p. (III.2)

The dependence of the minimum singular value σmin(A) on
the principle angles between the subspaces {Si}Mi=1 is given
in the theorem below, which is one of the two main theorems
of this section. The proofs are provided in [23].

Theorem 3. Assume that {Si}Mi=1 are independent subspaces
of RD with corresponding dimensions {di}Mi=1 such that∑M
i=1 di = D. Let {θj(Si)}min(di,D−di)

j=1 be the principle
angles between Si and

∑
` 6=i S`. If A =

[
a1 . . . aD

]
is a matrix whose columns {a1, . . . , aD} ⊂ ∪Mi=1Si form a
basis for RD, with ‖ai‖2 = 1, i = 1, . . . , D, then

σ2
min(A) ≤ min

i

min(di,D−di)∏
j=1

(
1− cos2(θj(Si))

)1/D

,

(III.3)
where σmin(A) is the smallest singular value of A.

Corollary 1. Under the same conditions of Theorem 3, a
simpler but possibly larger upper bound is given by:

σ2
min(A) ≤ min

i
(1− cos(θ1(Si))

1/D41/D, (III.4)

where θ1(Si) is the minimum angle between Si and
∑
` 6=i S`.

Theorem 4. Assume that {Si}Mi=1 are independent sub-
spaces of RD with corresponding dimensions {di}Mi=1 such
that

∑M
i=1 di = D. Let {θj(Si)}min(di,D−di)

j=1 be the prin-
ciple angles between Si and

∑
` 6=i S`. Assume that W =

[w1 · · ·wN ] ∈ RD×N is a matrix whose columns are drawn
from

⋃M
i=1 Si and the data is generic for each subspace Si.

If P is a permutation matrix such that WP =
[
AP BP

]
,

and AP is invertible, then

sup
P
{σ2

min(AP )} ≤ min
i

min(di,D−di)∏
j=1

(
1− cos2(θj(Si))

)1/D

.

(III.5)
In particular,

sup
P
{σ2

min(AP )} ≤ min
i

(1− cos(θ1(Si))
1/D41/D, (III.6)

where θ1(Si) is the minimum angle between Si and
∑
` 6=i S`.

Remark 1. The value σmin(AP ) can be arbitrarily close to
zero, thus, one of the goals is to find D columns of W that
form a basis such that σmin(AP ) is as close to the upper
bound as possible without an exhaustive search.

IV. SUBSPACE SEGMENTATION ALGORITHM FOR NOISY
DATA

Algorithm 1 works perfectly in noiseless data. For noisy
data, the success of the algorithm depends on finding a good
initial partition. Otherwise, the algorithm may terminate at
a local minimum. Theorem 2 works perfectly for noiseless
data (it determines a basis for each subspace and it correctly
clusters all of the data points). An algorithm for implementing
Theorem 2 is given in [23]. However, it does not perform
very well when sufficiently large noise is present because any
threshold value will keep some of the values that need to be
zeroed out and will zero out some of the values that need to
be kept. However, the thresholded reduced echelon form can
be used to determine a set of clusters that can in turn be used
to determine a good initial set of subspaces in Algorithm 1.

For example, if the number of subspaces is known and
the subspaces have equal and known dimensions (assume that
there are M subspaces and each subspace has dimension d),
then Algorithm 2 below combines Algorithm 1 and Theorem 2
as follows: First, the reduced row echelon form rref(W) of W
is computed. Since the data is noisy, the non-pivot columns of
rref(W) will most likely have all non-zero entries. The error in
those entries will depend on the noise and the positions of the
subspaces as in (3). Since each subspace is d-dimensional, the
highest d entries of each non-pivot column is set to 1 and all
other entries are set to 0. This determines the binary reduced
row echelon form Brref(W) of W (note that, according to
Theorem 2, each non-pivot column of Brref(W) is supposed
to have d entries). M groups of the equivalent columns of
Brref(W) are determined and used as the initial partition for
Algorithm 1. This process is described in Algorithm 2. Note
that a dimensionality reduction is also performed to speed up
the process.

Remark 2. In Step-5 of Algroithm 2, Brref(W) is computed
by setting the highest d entries of each non-pivot columns to
1 and the others to 0. If we do not know the dimensions of
the subspaces, we may need to determine a threshold from the
noise characteristics and a priori knowledge of the relative
position of subspaces using (III.1) and (III.3).

Remark 3. In Step-7 of Algorithm 2, we find the sub-
space Soi (P ) that minimizes the expression e(Wi, S) =∑
w∈Wi

dp(w, S) for each subset Wi in the partition P . For
data with light-tailed noise (e.g. Gausian distributed noise)
p = 2 is optimal and the minimum in Step-7 can be found using
SVD. For heavy-tailed noise (e.g. Laplacian distributed noise),
p = 1 is the better choice as described in the simulations
section.

Remark 4. In order to reduce the dimensionality of the
problem, we compute the SVD of W = UΣV t. In Algorithm 2,
each subspace is d-dimensional and there are M subspaces.
Therefore, it replaces W by (V t)r, where r = M×d is known
or estimated rank of W.
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Algorithm 2 Combined Algorithm - Optimal Solution So

Require: Normalized data matrix W.
1: Set r = M × d.
2: Compute the SVD of W and find (V t)r.
3: Replace the data matrix W with (V t)r.
4: Compute rref(W)
5: Compute Brref(W) by setting the highest d entries of

each non-pivot column to 1 and all the others to 0.
6: Group the non-pivot equivalent columns of Brref(W) into
M largest clusters {W1, . . . ,WM} and set the initial
partition P = {W1, . . . ,WM}.

7: For each subset Wi in the partition P find the sub-
space Soi (P ) that minimizes the expression e(Wi, S) =∑
w∈Wi

dp(w, S).

8: while
M∑
i=1

e(Wi, S
o
i (P )) > e(W,So(P )) do

9: for all i from 1 to M do
10: Update Wi = {w ∈ W : d(w, Soi (P )) ≤

d(w, Sok(P )), k = 1, . . . ,M}
11: Update Soi (P ) = argmin

S
e(Wi, S)

12: end for
13: Update P = {W1, . . . ,WM}
14: end while
15: So = {So1(P ), . . . , SoM (P )}

V. EXPERIMENTAL RESULTS

We used the Hopkins 155 Dataset [6] to evaluate our
algorithm. The RREF-based algorithm is extremely fast and
works well with two-motion video sequences. The average and
median errors for all two-motion sequences are 11.45% and
6.78%, respectively (8.81% and 5.44% for checker, 16.04%
and 11.94% for traffic, and 17.25% and 12.69% for articulated
motion). However, the error is very high for three-motion
sequences and obviously it does not work well with such video
sequences. We believe that this is due to the fact that the noise
is correlated, and the minimum of Problem 1 does not give the
correct clustering for this case. The best clustering method to
date for clustering in this case is based on similarity between
trajectory vectors computed from local subspace estimations
[26].

VI. CONCLUSION

This paper introduces a simple and very fast approach
for subspace segmentation for data drawn from a union of
subspaces. In absence of noise, our approach can find the
number of subspaces, their dimensions, and an orthonormal
basis for each subspace. We provide an analysis of our theory
and determine its limitations and strengths in presence of
outliers and noise.
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