
Orlicz Modulation Spaces
Catherine Schnackers

RWTH Aachen University
Lehrstuhl A für Mathematik

Aachen, Germany
Email: catherine.schnackers@matha.rwth-aachen.de

Hartmut Führ
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Abstract—In this work we extend the definition of modulation
spaces associated to Lebesgue spaces to Orlicz spaces and mixed-
norm Orlicz spaces. We give the definition of the Orlicz spaces
LΦ, a generalisation of the Lp spaces of Lebesgue. Therefore we
characterise the Young function Φ and give some basic properties
of this spaces. We collect some facts about this spaces that we
need for the time frequency analysis, then we introduce the Orlicz
modulation spaces. Finally we present a discretisation of the
Orlicz space and mixed-norm Orlicz space and a characterisation
of the modulation space by discretisation.

I. INTRODUCTION

The modulation spaces were introduced in 1983 by H.
Feichtinger. The idea is to impose a norm on the short-time
Fourier transform and to define Banach spaces of signals with
a given time-frequency behavior. Especially, the modulation
space Mp,q consists of all tempered distributions such that the
short-time Fourier transform is a function in the mixed-norm
Lebesgue space Lp,q . We will extend this concept and examine
modulation spaces associated to Orlicz spaces and mixed-norm
Orlicz spaces. The Orlicz spaces LΦ are a generalisation of the
Lp spaces of Lebesgue. For the Young function Φ(x) = |x|p
with p ≥ 1, LΦ(µ) = Lp(µ). In general, the function Φ is
a convex function, precisely a Young function. The mixed-
norm Orlicz spaces LΦ1Φ2 are vector-valued LΦ2 spaces where
Φ1,Φ2 are Young functions. Since the function x 7→ f(·, x)
takes values in the Banach space LΦ2 , the mixed-norm Orlicz
spaces LΦ1Φ2 arise by taking a LΦ2 norm with respect to the
time variable x and an LΦ1 norm with respect to the frequency
variable w. This can be considered as a generalisation of
the mixed-norm Lebesgue spaces Lp,q . As general setting let
(Ω,Σ, µ) be a measure space, where Ω is a set, Σ is a σ-
algebra of Ω and µ a σ-additive measure on Σ and f : Ω→ C
is a measurable function. We also assume that the measure µ
has the finite subset property, i.e., for E ∈ Σ with µ(E) > 0
there exists a subset F ∈ Σ with F ⊂ E and 0 < µ(F ) <∞.

II. ORLICZ SPACES AND MIXED-NORM ORLICZ SPACES

A. Definition and properties

Firstly we give the definition of a Young function Φ and
the ∆2-condition, which is a growth condition.
After that we introduce the Orlicz spaces and characterise
norms so that these spaces are Banach spaces. Then we
determine their corresponding dual spaces.

This section is based on the book [8] Theory of Orlicz spaces
of Rao and Ren.

Definition 1: (Young function) A convex function Φ : R→
R+ which satisfies the conditions:

1) Φ(−x) = Φ(x),Φ(0) = 0,
2) limx→∞Φ(x) = +∞,

is called Young function.
In the theory of Lebesgue spaces, the conjugate exponent q to
p is related to the dual space. By analogy, one can define the so
called complementary function, this function is the counterpart
to the conjugate exponent.

Definition 2: (Complementary function) If Ψ : R→ R+ is
defined by Ψ(y) = sup{x|y|−Φ(x);x ≥ 0}. Then Ψ is called
the complementary function to the Young function Φ.

In the structure theory of Orlicz spaces a classification of
the Young function based on properties of their growth plays
a central role. Of particular importance for us will be the ∆2-
condition.

Definition 3: (∆2-condition) A Young function Φ : R →
R+ is said to satisfy the ∆2-condition, if there exists a constant
K > 0 and x0 ∈ R+

0 , such that

Φ(2x) ≤ KΦ(x) for all x ≥ x0 ≥ 0.

Hereafter we say that a ∆2-condition for Φ is regular if it
holds locally (for a x0 > 0) when the measure in LΦ(µ) is
finite and globally (for x0 = 0) when the measure is infinite.

Definition 4: (Orlicz space) The function space

LΦ(µ) =

{
f : Ω→ C (equivalence classes of) Σ-measurable:∫

Ω

Φ (α|f |) dµ <∞ for at least one α > 0

}
with Φ : R→ R+ a Young function, is called Orlicz space.

We next define norms on LΦ(µ).
Definition 5: (Gauge norm and Orlicz norm) The norm

NΦ(f) = inf

{
k > 0 :

∫
Ω

Φ

(
|f |
k

)
dµ ≤ 1

}
is called gauge norm of the Orlicz space LΦ(µ) for a Young
function Φ : R→ R+.
By using the complementary Young function we can define
another norm on LΦ(µ).
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Let (Φ,Ψ) be a complementary pair of Young functions, then
we define the Orlicz norm as:

‖.‖LΦ : f 7→ ‖f‖LΦ= sup

{∫
Ω

|fg| dµ :

∫
Ω

Ψ (|g|) dµ ≤ 1

}
.

The two norms defined on the Orlicz spaces are equivalent,
furthermore the Orlicz spaces with the corresponding norms
are Banach spaces.

Theorem 1: [8] [Proposition 4 3.3.III, Corollary 12 III.3.3]
Let (Ω,Σ, µ) be a measure space, (Φ,Ψ) be a complementary
Young pair, then NΦ(f) ≤ ‖f‖LΦ ≤ 2NΦ(f) for f ∈ LΦ(µ).(
LΦ(µ), NΦ(·)

)
and

(
LΦ(µ), ‖·‖LΦ

)
are Banach spaces.

Since it is often useful to work with duality arguments in
proofs, we give a characterisation of the dual space to the
Orlicz space in the next theorem.

Theorem 2: [8] [Theorem 7, Corollary 9 IV.4.1] Let (Φ,Ψ)
be a complementary Young pair and Φ be ∆2-regular and
(Ω,Σ, µ) be σ-finite. Then

(
LΦ(µ)

)∗
is isometrically isomor-

phic to LΨ(µ).
We next extend the Orlicz space theory of C-valued func-

tions f : Ω ⊂ Rd → C to functions f : Ω ⊂ Rd → X whose
values lie in a Banach space X . Candidates for X are Orlicz
spaces LΦ2 associated to a Young function Φ2.

Definition 6: (Mixed-norm Orlicz space) Let (Ωi,Σi, µi)
be measure spaces, (Φi,Ψi) be complementary Young pairs
for i = 1, 2. Then the mixed-norm Orlicz space is

LΦ1Φ2 = LΦ1(µ1, L
Φ2(µ2))

=

{
f : Ω1 → LΦ2(µ2) strongly measurable on (Ω1,Σ1, µ1):∫

Ω1

Φ1(αNΦ2(f)) dµ1 <∞ for some α > 0

}
.

The corresponding gauge norm NΦ1Φ2
(·) = NΦ1

(NΦ2
(·)) is

given by:

NΦ1Φ2
(f) = inf

{
k > 0 :∫
Ω1

Φ1

(
|NΦ2(f(·, w1))|

k

)
dµ1(w1) ≤ 1

}
.

The Orlicz norm is similarly defined by

‖f‖Φ1Φ2
= sup

{∫
Ω1

∣∣∣∣‖f(·, w1)‖LΦ2 · g(w1)

∣∣∣∣ dµ1(w1) :

∫
Ω1

Ψ1(|g(w1)|) dµ1(w1) ≤ 1

}
,

As in the case of the Orlicz spaces the mixed-norm Orlicz
spaces are also Banach spaces and it can be shown that the
norms are equivalent.

Theorem 3: Let (Ωi,Σi, µi) be measure spaces,
(Φi,Ψi) be complementary Young pairs for
i = 1, 2, then (LΦ1(µ1, L

Φ2(µ2)), NΦ1Φ2(·)) and
(LΦ1(µ1, L

Φ2(µ2)), ‖·‖LΦ1Φ2 ) are Banach spaces and
the norms are equivalent. Furthermore it follows

NΦ1Φ2
(f) ≤ ‖f‖LΦ1Φ2 ≤ 4NΦ1Φ2

(f) for f ∈ LΦ1Φ2 .

If we assume that the Young functions are also strictly
convex the dual space to LΦ1,Φ2 is isometrically isomorphic
to the space LΨ1,Ψ2 to the complementary functions.

Theorem 4: [8] [Theorem 4 VII.7.5] Let (Ωi,Σi, µi) be
measure spaces, (Φi,Ψi) be complementary Young pairs
which are ∆2-regular and strictly convex for i = 1, 2. Then(
LΦ1Φ2

)∗
is isometrically isomorphic to LΨ1Ψ2 .

B. Useful properties for time frequency analysis
In this section we list properties of the Orlicz spaces which

are useful for time-frequency analysis. At first we mention
that the Orlicz norm and the mixed Orlicz norm are invariant
under translations, if the measure spaces are the Lebesgue
space (Ωi,Σi, µi) = (Rd,Bd, λλd) for i = 1, 2.

Lemma 1: Let Φi be Young functions for i = 1, 2, then
LΦ1(λλd) and LΦ1Φ2(λλ2d) = LΦ1( λλd, LΦ2(λλd)) are invariant
under TzF := F (· − z) and we have

NΦ1
(TzF ) = NΦ1

(F ) for F ∈ LΦ1(λλd), z ∈ Rd and

NΦ1Φ2(TzF ) = NΦ1Φ2(F ) for F ∈ LΦ1Φ2(λλ2d), z ∈ R2d.

Futher one can also prove a Hölder inequality for Orlicz
spaces.

Lemma 2: (Hölder inequality)[8] [Proposition 1 III.3.3] Let
(Ωi,Σi, µi) = (Rd,Bd, λλd) and (Φi,Ψi) be complementary
Young pairs for i = 1, 2. If F ∈ LΦ1(λλd) and G ∈ LΨ1(λλd),
then one has

∫
Rd

|F ·G| dλλd ≤ 2 ·NΦ1
(F )NΨ1

(G).

If we assume in addition that Φ2 is ∆2-regular, then one has
for F ∈ LΦ1Φ2(λλ2d) and G ∈ LΨ1Ψ2(λλ2d) the estimate∫

Rd

∫
Rd

|F ·G| dλλd dλλd ≤ 4 ·NΦ1Φ2(F )NΨ1Ψ2(G).

Now, we have a look at inclusion properties. If Φ is
continuous the Schwartz class S(Rd) is embedded into the
Orlicz space LΦ(λλd) and if also the complementary function
Ψ is continuous then the functions in the Orlicz space define
tempered distributions.

Lemma 3: Let (Φi,Ψi) be pairs of complementary Young
functions and Φi be continuous for i = 1, 2, then

S(Rd) ⊂ LΦ1(λλd),

and LΦ1(λλd) ⊂ S ′(Rd), if Ψ1 is continuous.

And S(R2d) ⊂ LΦ1Φ2( λλ2d),

and LΦ1Φ2( λλ2d) ⊂ S ′(R2d), if Ψ1,Ψ2 are continuous.

With the fact that (LΦ)∗ ∼= LΨ, we can extend a well
known convolution relation L1(Rd) ∗ Lp(Rd) ⊂ Lp(Rd) of
the Lebesgue spaces to the Orlicz spaces. Further one can
prove the following Young inequality.

Theorem 5: If F ∈ L1(R2d), G ∈ LΦ(λλ2d) and Φ is a
∆2-regular Young function, then

‖F ∗G‖LΦ ≤ 2‖F‖L1‖G‖LΦ .

If F ∈ L1,1(R2d), G ∈ LΦ1Φ2 and Φi are ∆2-regular and
strictly convex Young functions for i = 1, 2, then

‖F ∗G‖LΦ1Φ2 ≤ 4‖F‖L1,1‖G‖LΦ1Φ2 .
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III. ORLICZ MODULATION SPACES AND MIXED-NORM
ORLICZ MODULATION SPACES

We now have all the tools in place that we need to define and
analyse the modulation space associated to the Orlicz space.

Definition 7: (Orlicz modulation space)
Fix a non-zero window g ∈ S(Rd) and a Young function Φ.
Then the Orlicz modulation space MΦ(Rd) is defined by

MΦ(Rd) = {f ∈ S ′(Rd) : Vgf ∈ LΦ(R2d)}.

The norm on MΦ is ‖f‖MΦ = ‖Vgf‖LΦ .

In the same way we define the mixed-norm Orlicz modula-
tion space.
Therefore we replace only the Orlicz space LΦ by the mixed-
norm Orlicz space LΦ1Φ2 .

Definition 8: (Mixed-norm Orlicz modulation space)
Fix a non-zero window g ∈ S(Rd) and Young functions Φi

for i = 1, 2. Then the Orlicz modulation space MΦ1Φ2(Rd)
is defined by

MΦ1Φ2(Rd) = {f ∈ S ′(Rd) : Vgf ∈ LΦ1Φ2(R2d)}.

The norm on MΦ1Φ2 is ‖f‖MΦ1Φ2 = ‖Vgf‖LΦ1Φ2 .

Remark 1: Modulation spaces are a special case of the
coorbit spaces defined by H. Feichtinger and K.H. Gröchenig
[1], and Orlicz spaces are mentioned, without proof, as classes
of Banach function spaces Y suitable to define coorbit spaces
CoY . In this paper we make this remark more explicit by pro-
viding additional details such as associated discrete coefficient
spaces, relationship to tempered distributions, dual spaces, etc.
We would also like to point out that to our knowledge, mixed-
norm Orlicz spaces have not been considered previously.

Now we analyse a few properties of the Orlicz modulation
spaces. We start with the observation that the definitions of
these spaces are independent of the choice of a window g. In
addition, if the Young function is ∆2-regular, these spaces are
also Banach spaces.

Theorem 6: Assume that Φ is a ∆2-regular Young function
and its complementary function Ψ is continuous. Then the def-
inition of MΦ(Rd) is independent of the window g ∈ S(Rd)
and MΦ(Rd) is a Banach space.

If we assume that the Young functions are also strictly
convex, we can show an analogous statement for the mixed-
norm Orlicz spaces.

Theorem 7: Let (Φi,Ψi) be complementary Young pairs
which are ∆2-regular, strictly convex and continuous for
i = 1, 2. Then the definition of MΦ1Φ2(Rd) is independent of
the window g ∈ S(Rd) and MΦ1Φ2(Rd) is a Banach space.

Furthermore, the duality between the Orlicz spaces LΦ and
LΨ suggests a similar statement for their modulation spaces.
This can be proved in the following theorem by using the
∆2-condition for the Young function.

Theorem 8: If (Φ,Ψ) is a complementary Young pair and if
Φ is ∆2-regular and continuous, then

(
MΦ(Rd)

)∗ ∼= MΨ(Rd)
under the duality

〈f, h〉 =

∫∫
R2d

Vg0
f(z)Vg0

h(z) dz

for f ∈MΦ(Rd) and h ∈MΨ(Rd), g0 ∈ S(Rd).
Let (Φi,Ψi) be complementary Young pairs which are ∆2-
regular, strictly convex and continuous for i = 1, 2. Then(
MΦ1Φ2(Rd)

)∗ ∼= MΨ1Ψ2(Rd) under the duality

〈f, h〉 =

∫∫
R2d

Vg0f(z)Vg0h(z) dz

for f ∈MΦ1Φ2(Rd) and h ∈MΨ1Ψ2(Rd), g0 ∈ S(Rd).

IV. DISCRETE ORLICZ SPACE AND DISCRETE
MIXED-NORM ORLICZ SPACE

This space consists of all sequences for which the discrete
norm defined by the next definition is finite.

Definition 9: (Discrete Orlicz space) Let Φ be a Young
function, then the discrete Orlicz space is defined by

lΦ(Zd) = {a = (an)n∈Zd : nΦ(a) <∞},

where
nΦ(a) = inf

{
λ > 0 :

∑
n∈Zd

Φ

(
|an|
λ

)
≤ 1

}
.

Definition 10: (Discrete mixed-norm Orlicz space) Let
Φ1,Φ2 be Young functions, then the discrete mixed-norm
Orlicz space is defined by

lΦ1Φ2(Z2d) = {a = (akn)k,n∈Zd : nΦ1Φ2(a) <∞},

where
nΦ1Φ2(a) = inf

{
λ > 0 :

∑
k,n∈Zd

Φ1

(
nΦ2(|akn|)

λ

)
≤ 1

}
.

With these definitions we can apply the theory of Atomic
Decomposition of H. G. Feichtinger and K. H. Gröchenig
presented in the paper [1]. In the context of Orlicz modulation
spaces we get the following result.

Theorem 9: (The Atomic Decomposition in MΦ) [1] Let
Φ be a ∆2-regular Young function. For any g ∈ S(Rd) there
exist positive constants C0 and C1 (depending only on g) and
a neighbourhood U of the identity such that for an arbitrary
U -dense and relatively separated family X = (xi)i∈I ⊂ R2d

the following is true:
1) Analysis: There exists a bounded linear operator A :

MΦ → lΦ(X), i.e., writing Λ := (λi)i∈I := A(f)
one has nΦ(Λ) ≤ C0‖f‖MΦ , such that every f ∈ MΦ

can be represented as f =
∑
i∈I

λiρ(xi)g, where ρ is the

Schrödinger representation.
2) Synthesis: Conversely, assuming that X = (xi)i∈I is

relatively separated, every Λ ∈ lΦ defines an element
f =

∑
i∈I

λiρ(xi)g in MΦ with ‖f‖MΦ ≤ C1nΦ(Λ).

In both cases convergence takes place in the norm of MΦ.
Moreover by using the results in [3] of H.G. Feichtinger,

K. H. Gröchenig and D. Walnut the orthonormal Wilson
bases are unconditional bases for some Orlicz modulation
spaces. Consequently in these cases MΦ and lΦ are isomorphic
Banach spaces. Simple Wilson bases of exponential type are
given by the following construction.
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Definition 11: [3] A real-valued function ψ constructed,
such that |ψ(x)| ≤ Ce−a|x| and |ψ̂(t)| ≤ Ce−b|t|
and such that the ψln, l ∈ N, n ∈ Z, defined by
ψ0n(x) = ψ(x− n)
ψln(x) =

√
2ψ
(
x− n

2

)
cos(2πlx) l 6= 0, l + n ∈ 2Z

ψln(x) =
√

2ψ
(
x− n

2

)
sin(2πlx) l 6= 0, l + n ∈ 2Z + 1

constitute an orthonormal basis for L2(R).
In their work [3], H.G. Feichtinger, K. H. Gröchenig and D.

Walnut use the density of the functions with compact support
in the Banach function space. The following lemma gives a
characterisation of this density for Orlicz spaces.

Lemma 4: Let Φ be a Young function, Φ(x) = 0 if and only
if x = 0, and LΦ(R2) be the associated Orlicz space on R2.
Then the bounded functions with compact support are dense
in LΦ(R2) if the Young function satisfies the ∆2 condition.

If we have the ∆2-regularity of the Young function it
follows from [3].

Theorem 10: Assume that the Young function Φ satisfies
the ∆2 condition. Then the orthonormal Wilson bases are
unconditional bases for MΦ(R).

Moreover we can characterise inclusion properties of Orlicz
modulation spaces by using properties of the corresponding
Orlicz sequence spaces as in [2]. Additionally we can translate
this to a comparison of Young functions.

Theorem 11: Let Φ1,Φ2,Φ
′
1,Φ

′
2 unbounded Young func-

tions. Then MΦ1Φ′
1 ⊂MΦ2Φ′

2 if and only if lΦ1Φ′
1 ⊂ lΦ2Φ′

2 if
and only if there are constants C1, C2 > 0 and t1, t2 ≥ 0 such
that Φ2(t) ≤ C1Φ1(t) for all 0 ≤ t ≤ t1 and Φ′2(t) ≤ C2Φ′1(t)
for all 0 ≤ t ≤ t2.

Next, we wanted to give, without proof, an example of an
embedding relation between Fourier-Lebesgue spaces and a
concrete Orlicz modulation spaces. This result is an extension
of the embedding theorems that Y.V. Galperin and K.H.
Gröchenig gave in her work [5].

Theorem 12: Suppose that g ∈ S(Rd), f ∈ S ′(Rd), C >
0, N ≥ 0 and |Vgf(x,w)| ≤ C(1+ |x|+ |w|)N for alle x,w ∈
Rd and 0 < p ≤ 2, p ≤ r, s ≤ 2, 1

s + 1
s′ = 1, 1

r + 1
r′ = 1. If(

ap−N
pd

+
1

r
− 1

p

)(
bp−N
pd

+
1

s
− 1

p

)
>

(
N

pd
+

1

p
− 1

s′

)(
N

pd
+

1

p
− 1

r′

)
with all factors positive, then Lr

a∩FLs
b ↪→Mp,p

N
p ,Np
⊂Mlp ln l.

V. CONCLUSION AND OUTLOOK

In this work we have presented and analysed modulation
spaces associated to Orlicz spaces and mixed-norm Orlicz
spaces. It is possible to extend the theory of modulation
spaces associated to Lebesgue space (understood as spaces
of tempered distributions) to more general Orlicz spaces and
mixed-norm Orlicz spaces. For some results the adaptation was
straightforward, but in other cases further conditions on the
Young function, in particular the ∆2 condition, are necessary
to obtain analogs to the results known for classical modulation
spaces.

The most general approach to modulation spaces follows [1]
and [2]. Here, the ∆2 condition is needed to characterise duals
of Orlicz modulation spaces (in particular in the mixed-norm
setting), but also to establish density of bounded functions with
compact support in the Orlicz space (needed, e.g., in Lemma
4, and subsequently in Theorem 10).
A more accessible, but less general approach is developed in
[6]. The adaptation of the arguments in [6] is often feasible
(and instructive), however, since duality plays a stronger role
here, the ∆2 condition is needed more often than in the general
case.

Furthermore we derive embedding results between Orlicz
modulation spaces by using the discretisation of the Orlicz
spaces, especially by using comparison of Young functions.
For a special Orlicz modulation space we can also give an
embedding relation of Fourier-Lebesgue spaces into this Orlicz
modulation space. But at this time it isn’t clear if this result
has also an interpretation as uncertainty principles as in [5].
Another topic of interest for further work are relations appli-
cations to entropy estimates.
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[6] K. H. Gröchenig, Foundations of time-frequency analysis, Applied and
Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA,
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