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Abstract—We study shift-variance and cyclostationarity of
linear periodically shift-variant (LPSV) systems. Both input and
output spaces are assumed to be of continuous-time. We first
determine how far an LPSV system is away from the space of
linear shift-invariant systems. We then consider cyclostationarity
of a random process based on its autocorrelation operator.
The results allow us to investigate properties of output of an
LPSV system when its input is a random process. Finally,
we analyze shift-variance and cyclostationarity of generalized
sampling-reconstruction processes.
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I. INTRODUCTION

Shift-variance and cyclostationarity are two important issues
in the study of linear shift-variant systems and random pro-
cesses. They have found applications in many fields, including
communication and signal processing. See [2], [4] and the ref-
erence therein. Recently, Aach and Führ studied shift-variance
properties of multirate filterbanks with either deterministic
or random inputs [2]. They analyzed shift-variance of the
filterbank and calculated the cyclostationarity of its output.
For generalized sampling processes, we also performed shift-
variance analysis in the deterministic setting [11]. It is the
purpose of this paper to report our extension of the results to
linear periodically shift-variant LPSV systems whose inputs
and outputs are both of continuous-time.

As in [2], we also consider the effect of LPSV systems
on the deterministic and random signals. We apply a norm
in a Hilbert space of linear systems. The distance between
the LPSV system and the space of linear shift-invariant (LSI)
systems is then used to measure the shift-variance of the LPSV
system. To study cyclostationarity of random processes, we
also follow the idea of [2] to link the cyclostationarity to the
shift-variance of the associated autocorrelation operator (or
function). This is because a random process is wide sense
stationary (WSS) if and only if (iff) the operator is shift-
invariant; and it is wide sense cyclostationary (WSCS) iff the
operator is LPSV. We then obtain a kind of cyclostationarity
based on the shift-variance level of the autocorrelation opera-
tor. This cyclostationarity also characterizes the distance from
the autocorrelation of a random process to the autocorrelation
of a nearest WSS process.

Finally we treat generalized sampling-reconstruction pro-
cesses as a particular application. For minimum error recon-

struction, we assume that the sampling and reconstruction
kernels form Riesz dual basis [9]. The expected shift-variance
and cyclostationarity of the output signal are then determined.
Two illustrative examples are provided.

For brevity most derivations and proofs are omitted.

II. SHIFT-VARIANCE OF LPSV SYSTEMS

We start this section with some basic definitions. The main
aim is to determine the nearest shift-invariant system for any
LPSV system.

Let L2 be the Hilbert space of square integrable continuous-
time functions. Let H(L2 → L2) : x(t) 7→ y(t) be a bounded
linear system. Denote by B the linear space of all bounded
systems. For each T > 0, BT denotes the subspace of bounded
LPSV systems with period T (T -LPSV); and B0 the subspace
of all bounded shift-invariant systems. Note that B0 ⊂ BT .

For every H ∈ BT , we can specify it with its response to
shifted impulse function δs(·) = δ(· − s). Let the response be
Hδs(t) = h(t, t− s). Then the output of H is given as

y(t) = Hx =

∫ ∞

−∞
h(t, s)x(t− s) ds (1)

Throughout the paper we assume that H ∈ BT , or equivalently
h(t+ T, s) = h(t, s).

Since h(t, s) is periodic in t with period T , we can express
the impulse response as Fourier series

h(t, s) =
∑
k∈Z

hk(s) e
jkω0t (2)

where ω0 = 2π/T and the coefficients are

hk(s) =
1

T

∫ T

0

h(t, s) e−jkω0t dt (3)

Let ĥ(t, ξ) be Fourier transform of h(t, s) with respect to s.
As a function of t, ĥ(t, ξ) is also periodic with period T . Thus
we can express it as Fourier series

ĥ(t, ξ) =
∑
k∈Z

ĥk(ξ) e
jkω0t (4)

where

ĥk(ξ) =
1

T

∫ T

0

ĥ(t, ξ) e−jkω0t dt (5)

Note that ĥk(ξ) is actually the Fourier transform of hk(s).
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We define a norm of H by

∥H∥2 =
1

T

∫ T

0

∥Hδs(·)∥22 ds (6)

By change of variable, we get

∥H∥2 =
1

T

∫ T

0

∫ ∞

−∞
|h(t, s)|2 ds dt (7)

And using Parseval’s relation, we can express the norm in the
Fourier domain:

∥H∥2 =
∑
k∈Z

∫ ∞

−∞
|hk(s)|2 ds

=
1

2π

∑
k∈Z

∫ ∞

−∞
|ĥk(ξ)|2 dξ (8)

Let G ∈ B0 and g be its impulse response i.e., g(t) = Gδ(t).
The distance (squared) between H and G can be calculated
as

d2(H,G) = ∥H −G∥2

=
1

T

∫ T

0

∫ ∞

−∞
|h(t, s)− g(s)|2 ds dt

=

∫ ∞

−∞
(|h0(s)− g(s)|2 +

∑
k ̸=0

|hk(s)|2) ds(9)

The above expression allows us to determine the nearest
system G0 ∈ B0. It is specified by the impulse response

g0(s) = h0(s) =
1

T

∫ T

0

h(t, s)dt (10)

Note that G0 is the orthogonal projection of H onto the
subspace B0 and that the impulse response h0 is the DC
component of h(t, s).

Then we have the distance between H and B0:

d2(H,B0) =
1

T

∫ T

0

∫ ∞

−∞
|h(t, s)− g0(s)|2 ds (11)

That is,

d2(H,B0) =
∑
k ̸=0

∫ ∞

−∞
|hk(s)|2ds (12)

or

d2(H,B0) =
1

2π

∑
k ̸=0

∫ ∞

−∞
|ĥk(ξ)|2 dξ (13)

Note that h(t, s) − g0(s) is in the orthogonal complement
space of the shift-invariant subspace B0. Thus the LPSV
system H − G0 can be considered the shift-variant part of
H . Following [2], we can also define d(H,B0) as the shift-
variance level (denoted by SV2(H)) of H .

III. CYCLOSTATIONARITY OF RANDOM PROCESSES

In this section we shall study cyclostationarity of a random
process by linking it to the shift-variance of a linear system
that is determined by autocorrelation function of the process.

Let z : R → C be a zero-mean continuous-time random
process with E{|z(t)|2} < ∞, t ∈ R, where E denotes
the expectation operator. The autocorrelation function of z is
defined as rz(t, s) = E{z(t + s) z∗(t)}. The random process
z is called WSS if rz(t, s) is independent of time, t; and it is
WSCS with period T (T -WSCS) if rz(t+T, τ) = rz(t, s). The
notions for discrete-time random process are similarly defined.

We consider the autocorrelation operator Rz as a deter-
ministic linear system whose impulse responses are specified
as Rz δs = rz(t, t − s). It is assumed that Rz ∈ B. Note
that z is WSS iff Rz is shift-invariant system; and z is T -
WSCS iff Rz is T -LPSV system. This suggests that we can
characterize cyclostationarity of random process z by shift-
variance of linear system Rz . The amount of cyclostationarity
of z can be assessed in terms of the shift-variance measure of
Rz:

Cyc(z) = SV2(Rz) (14)

This measure quantifies the distance between the autocorrela-
tion function rz(t, τ) and the nearest autocorrelation function
of a WSS random process.

We point out that the degree of cyclostationarity (DCS)
defined in [9] is a normalized version of Cyc2(z), specifically

DCS(z) =
Cyc2(z)∫∞

−∞ |rz0(s)|2 ds
(15)

where rz0(t) is the impulse response of the nearest system in
B0.

IV. EXPECTED SHIFT-VARIANCE OF LPSV SYSTEMS
WITH RANDOM INPUT

Now assume that the input is random (for example, a WSS
process), how can we quantify the shift-variance of an LPSV
system? This problem was considered by Aach and Führ for
multirate discrete-time systems. They introduced the notation
of expected shift-variance, which is related not just to the
system itself, but also to the random input.

Similar to [1], introduce the commutator

[H, τs] = Hτs − τsH (16)

where τs : x(t) 7→ x(t− s) is the shift operator. The expected
shift-variance of H with input x can then be defined as

ESV2(H,x) =
1

T 2

∫ T

0

∫ T

0

E(|[H, τs]x(t)|2) ds dt (17)

After some tedious calculations, we obtain in the time-domain
that

ESV2(H,x) = 2
∑
k ̸=0

∫ ∞

−∞

∫ ∞

−∞
h∗
k(t)hk(t− s)rx(s) ds dt

(18)
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Fig. 1. A generalized sampling and reconstruction process

and in the Fourier domain that

ESV2(H,x) =
1

π

∑
k ̸=0

∫ ∞

−∞
|ĥk(ξ)|2 Sx(ξ) dξ (19)

where Sx(ξ) is the power spectral density of x, i.e., the Fourier
transform of rx [7]. Note that the ESV tells how different the
expected value of the output to a shifted input from that of
shifted output.

Note that the ESV is zero iff the system is LSI. And the
Fourier domain expression (19) provides some insight as when
an LPSV system becomes LSI (see the examples at the end
of Section V).

V. GENERALIZED SAMPLING-RECONSTRUCTION
PROCESSES

Sampling-reconstruction process plays an important role
in signal processing and communication. In particular, the
generalized sampling-reconstruction theory of Unser and Al-
droubi [9] offers a versatile framework in studying many
problems of sampling beyond Shannon.

In this section, we investigate cyclostationarity and shift-
variance of generalized sampling-reconstruction processes
show in Fig. 1, where x is a zero-mean WSS random process;
and for minimum error between input signal and the output
signal (which is in the space of spanned by {φ(· − nT )}n),
φ̃(t) and φ(t) are assumed to be dual Riesz basis [9]. It is
well-known that sampling generally results in shift-variance
whereas reconstruction introduces cyclostationarity.

Consider the sampling first. The output of sampling u[n] is
given by 1

u[n] = ⟨x, φ̃(· − nT )⟩

=

∫ ∞

−∞
φ̃∗(t− nT )x(t) dt (20)

Note that u is of discrete-time and has autocorrelation function

ru[n, k]
=E{

∫∞
−∞

∫∞
−∞φ∗(t1−(n+ k)T )x(t1)φ(t2−nT )x∗(t2) dt1dt2}

(21)
By change of variable t1 − nT → t1 and t2 − nT → t2 we
get

ru[n, k] =

∫ ∞

−∞

∫ ∞

−∞
φ̃∗(t1 + kT ) φ̃(t2) rx(t1 − t2)dt1dt2

(22)
Since ru above is independent of n, thus it is a WSS discrete
random process and the power spectral density of u is

Su(e
jξT ) =

1

T

∑
n∈Z

| ˆ̃φ(ξ + 2nπ/T )|2 Sx(ξ + 2nπ/T ) (23)

1Note that the integration for random signals is in the mean square sense [5].

In the reconstruction part, the output is

y(t) =
∑
n∈Z

u[n]φ(t− nT ) (24)

and its autocorrelation function becomes

ry(t, s) =
∑

n1,n2∈Z

φ(t+s−n1T )φ
∗(t−n2T )ru[n1−n2] (25)

Note that ry(t+ T, s) = ry(t, s), thus y is T -WSCS.
In order to analyze the shift-variance of system H in Fig. 1,

we need to determine its input-output relation. By direct
substitution and change of variable, we obtain that

y(t) = Hx =

∫ ∞

−∞
h(t, s)x(t− s) ds (26)

where

h(t, s) =
∑
n∈Z

φ̃∗(t− s− nT )φ(t− nT ) (27)

is the impulse response. It can be shown that h(t + T, s) =
h(t, s) and

ĥk(ξ) =
1

T
ˆ̃φ∗(ξ)φ̂(ξ + kω0) (28)

Since ˆ̃φ(ξ)
∑

k∈Z |φ̂(ξ + kω0)|2 = T φ̂(ξ) [6], hence

∥H∥2 =

∫ ∞

−∞
|φ(t)|2dt (29)

Apply the results in previous sections, we can obtain the
following results:

Cyc2(y) =
1

2π T 2

∑
k ̸=0

∫ ∞

−∞
|φ̂(ξ) φ̂(ξ+2πk/T )Su(e

jξT )|2 dξ

(30)
and

ESV2(H,x) =
1

πT 2

∑
k ̸=0

∫ ∞

−∞
| ˆ̃φ(ξ)φ̂(ξ + 2πk/T )|2Sx(ξ)dξ

(31)
Finally, let us consider two examples. The first one is about

the traditional Shannon’s sampling. In this case the kernels
φ̃(t) = φ(t) = sinc(t/T )/

√
T . From equation (25) and (27)

it is not immediate that the output y is WSS for WSS input
and that the sampling-reconstruction system is LSI. On the
other hand if we examine (30) and (31), we can easily see
that Cyc(y) = ESV(H,x) = 0 for each x, since the Fourier
transform of φ is zero for |ξ| > π/T . Consequently the output
is WSS and the sampling-reconstruction process is LSI.

In the other example, φ is taken to be B-spline of various
order n [8] which is normalized such that

∫∞
−∞ |φ(t)|2dt = 1.

And for the input we take the unit variance white Gaussian
noise, hence Sx(ξ) = 1. Now the expected shift-variance
turns out to be equivalent to cyclostationarity: ESV(H,x) =√
2Cyc(y). Furthermore from (30) it follows that

Cyc2(y) = 1− 1

2π T 2

∫ ∞

−∞
|φ̂(ξ) ˆ̃φ(ξ)|2 dξ (32)

Consequently 0 ≤ Cyc(y) ≤ 1.
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For the zero order B-spline (a box), we obtain Cyc(y) =
0.5773 > 0.5. This result indicates that output is quite non-
stationary (in the wide sense). We also obtain numerical values
of Cyc(y) for other orders: they are 0.3546 (n = 1), 0.2864
(n = 2), 0.2485 (n = 3), and 0.2227 (n = 4). Again the output
is not WSS for all cases, but now the output y seems to be
more stationary than non-stationary as the order n increases.
We expect that Cyc(y) can become arbitrary small for n large
enough.

VI. CONCLUSION

We reported our latest study on shift-variance and cy-
clostationarity analysis of LPSV systems. We extended re-
cent similar results to systems with continuous-time input
and output, rendering our treatment of generalized sampling-
reconstruction processes. The extension enables us to define
and compute the following:

• a distance of an LPSV system to the nearest linear shift-
invariant system.

• a cyclostationarity of a WSCS random process
• the expect shift-variance of a generalized sampling pro-

cess and cyclostationarity of its output when the input is
WSS.
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