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Abstract—This contribution presents first results on two pro-
posed methods to trace sound objects within texture sounds. We
first discuss what we mean by these two notions and explain
how the properties of a sound that is known to be textural are
exploited in order to detect changes which suggest the presence
of a distinct sound event. We introduce two approaches, one is
based on Gabor multipliers mapping consecutive time-segments
of the signal to each other, the other one on dictionary learning.
We present the results of simulations based on real data.

I. INTRODUCTION

Sound signals play a central role in human life and the

manner sound is perceived is highly sophisticated, complex

and context-dependent. In some applications, one may be

interested in distinguishing between what may be called a

”sound object” and more textural sound components consti-

tuting an acoustical background. The notion of sound object

(”objet sonore”) was introduced by Pierre Schaeffer [10] as a

generalization of the concept of a musical note, in particular

their definition implies a time-limitation of sound objects.

Human listeners tend to perceive sound in a structured

manner, with the ability to focus and de-focus. Whether a

particular event is experienced as a relevant sound structure as

opposed to background, textural sound, seems to depend both

on cultural and educational background, cp. [5], that may be

shared by a group of listeners. From a certain point of view,

the perception of sound components as background (textural)

sound or object (compactly structured) sound, depends on the

”zoom” the listener wishes to adopt or unconsciously assumes.

In this contribution, we attempt to mimic these observations

in a technical way, by ”defining” a sound to be textural if it

does not change certain characteristics which are first to be

determined from a certain amount of data. In that sense, we

need the a priori knowledge that a particular part of a signal

represents textural sound segments. Any signal components

representing a significant change are then considered to be

new objects in the sense of not belonging to the previous

texture sound or background. By definition, a characterizing

feature of texture sounds, in particular as opposed to the signal

components we would like to call sound objects, is some kind

of stationarity over an extended period of time; while micro-

changes are always present, the listener integrates them as part

of the texture, at least after some time has passed. Therefore,

any two sufficiently long slices of a pure texture sound can,

and should, be assumed to be correlated. This observation

leads us to the following approach: given a signal which

is known to present a texture sound, we learn its inherent

characteristics. Using the information gained from the learning

step, we can then look for significantly different, hence salient,

signal components, which we then define to represent a sound

object.

For both the learning and the observation period, we divide

the signal into overlapping time-slices. Then, during observa-

tion, we look for substantial changes from one part of the

signal to another, which would indicate the presence of a

sound object. We are going to quantify, what we mean by

substantial changes, by means of two technical tools: sparsity

in an appropriate dictionary and similarity of Gabor trans-

forms. Based on these two tools, we introduce two methods

to scan texture signals for the presence of what may be

conceived as sound objects. While the proposed framework

may also be useful for the task of detecting audio events, this

application is not the primary motivation for our study. The

latter, challenging task addressed in the framework of CASA 1

requires a much wider and more elaborate evaluation stage and

is beyond the scope of the current contribution. Here, we are

primarily motivated by a different challenge, which parallels

the cognitive process sketched above: we mimic a situation

in which a user/listener makes real-time decisions about the

property of an event occurring in the signal to be or not to be

a sound object which deserves attention. We divide the signal

into overlapping slices. In the first approach we propose, we

make use of Gabor transforms; more precisely, the variations

of the Gabor coefficients between different slices of the signal

are tracked by investigating corresponding Gabor multipliers.

The second proposed method is by means of the exploitation

of sparsity constraints via dictionary learning. Given a part of

a texture sound which is known to be free of sound objects,

we learn a dictionary such that each slice admits a sparse

approximate representation in that dictionary. We then scan

the signal piece by piece by checking its reconstruction error

with respect to the corresponding dictionary, in order to detect

in which intervals of time an object may occur.

The two methods and the involved tools are presented in

the next section. Then, some promising results of preliminary

simulations are presented in Section III and we conclude with

a short discussion and perspectives.

1Computational Auditory Scene Analysis, cp. [13].
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II. TECHNICAL TOOLS FOR SOUND OBJECT TRACING

The proposed methods aim at deciding about the presence

of distinct sound objects within a signal whose first section

is known to be textural. Both methods give a decision about

the presence or absence of an object within a given slice of

the signal. This can be seen as a first step in exact object

localization in terms of precise onset and offset times, and

later extraction. We will see in Section III that the proposed

methods are designed particularly for longer signals and

should be applicable to online-applications.

Before describing the two methods in detail we recall some

definitions from Gabor analysis and fix notation. We will be

working with square integrable functions L2(R), with norm

‖·‖2 induced by an inner product 〈f, g〉 =
∫
R
f(t)g(t) dt,

f, g ∈ L2(R). For f ∈ L2(R) and ω, τ ∈ R, the operators

Mωf(t) = e2πiωtf(t) and Tτf(t) = f(t − τ) are called

frequency and time shift operators, respectively. A collection

G(g, a, b) = {gk,l := MblTakg}k,l∈Z is called a Gabor frame

for L2(R) if the operator Sg,g

Sg,gf =
∑

k,l∈Z

〈f, gk,l〉gk,l for all f ∈ L2(R) (1)

is bounded and invertible on L2(R).2.

For every frame G(g, a, b) there exists a function γ, called

dual window, such that G(γ, a, b) is again a frame, called dual

Gabor frame, and f = Sg,γf = Sγ,gf for all f ∈ L2(R).

Let f ∈ L2(R) be a background, texture signal. We divide

it into overlapping slices fi, i ∈ Z, in the following way:

fi(t) = f(t) for t ∈ [αi, βi] with αi−1 < αi ≤ βi−1 and

αi+1 ≤ βi < βi+1.

A. Gabor Multipliers

We first describe the method based on Gabor multipliers.

This method not only allows to detect a change but also gives

more information on the time-frequency location of a potential

object. Let G(g, a, b) be a Gabor frame and G(γ, a, b) its dual

frame. Let m = {mk,l}k,l∈Z be a bounded complex-valued

sequence. Then the Gabor multiplier associated to (g, γ, a, b)
with symbol, or mask, m is given by

Gmf =
∑

k,l∈Z

mk,l〈f, gk,l〉γk,l . (2)

The operator Gm is well defined and bounded on L2(R) [4].

In [8] the authors addressed the problem of transforming

one signal into another by means of linear operators. They

focus on Gabor multipliers as the transforming operators.

More precisely, for two signals f1 and f2, given dual frames

G(g, a, b) and G(γ, a, b), the objective is to find a symbol m

such that the Gabor multiplier Gm takes f1 into f2 subject

to certain constraints on the mask m. The constraints on the

mask can be sparsity in time-frequency plane or total energy.

2Note that the coefficients 〈f, gk,l〉 in Sg,g are samples of a short-time
Fourier transform of f at sampling points (ak, bl).

An optimal mask, subject to given constraints is a solution to

the following minimization problem

min
m

‖f1 −Gmf2‖
2
2 subject to d(m) < ǫ , (3)

where d we can chosen to be, for example d(m) = λ‖|m| −
1‖1, to promote sparsity, or d(m) = λ‖m − 1‖22 to control

total energy, where λ is a sparsity prior tuning the influence

of the second term in (3).

For texture sounds, the slices fi, as defined in the previous

section, are similar, hence also their Gabor transforms. The

grade of similarity is learned from the first part of the signal,

which is known to be textural. Then, a symbol mi of a Gabor

multiplier transforming fi to fi+1, fi+1 = Gmi
fi, is close

to one, or in other words d(mi) is close to zero. During the

learning phase, the parameter λ should be tuned to yield small

deviations from the constant mask m = 1.

Now, the problem of detecting a sound object versus a sta-

tionary background is based on studying masks mi. If mi is

significantly different from 1, or d(mi) > ǫ for some chosen

ǫ > 0, then the slices fi and fi+1 differ significantly which

leads us to assuming the presence of an object in slice fi+1.

a

B. Dictionary Learning with Sparsity Prior

Given a dictionary D ∈ C
K×L, K < L and a signal f ∈

C
K , we say that f admits an S−sparse approximation over

D if one can find an approximation of f by S atoms from D.

In other words, we are looking for coefficients x ∈ C
L, such

that

f ≈ Dx while ‖x‖0 ≤ S. (4)

Here, ‖·‖0 is a pseudo-norm counting the non-zero entries

in x. Finding the best solution to (4) is an NP-hard problem;

however by relaxing the counting pseudo-norm to an ℓ1 norm,

it becomes a convex optimization problem that can be tackled

with many existing efficient algorithms, such as basis pursuit

(BP) [2], orthogonal matching pursuit (OMP) [12] or FOCUSS

[9]. A dictionary yielding sparse approximate representation

for a class of signals can be learned from a sufficient number of

data samples. Let F be a set of N signals fi ∈ C
K , collected

into a matrix of size K × N , for which one would like to

find a dictionary such that each signal in the group admits an

S−sparse approximate representation. A dictionary with the

desired properties can be built by finding a solution to the

following minimization problem

min
X,D

N−1∑

i=0

‖fi −Dxi‖
2
2 subject to, for every i ‖xi‖0 ≤ S ,

(5)

where X ∈ C
L×N is the matrix of coefficients xi ∈ C

L.

Among many algorithms addressing the problem of dictionary

learning are K-SVD [1], maximum likelihood methods [7] or

the MOD method [3].

For a given texture sound f , we observe the first couple

of seconds of the signal and learn a dictionary which gives

a sparse approximate representation thereof. We build the
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training data set F by considering slices of first L samples

of f , each of length K with M ≥ 0 samples of overlap,

i.e. fi(k) = f(i(K − M) + k) where k = 0, . . . ,K − 1
and i = 0, . . . , N − 1. Then, assuming ongoing textural

characteristics of f , the slices fi for i ≥ N also admit sparse

approximate representation in the same dictionary while no

significant changes occur. In detail, let ǫ > 0 be given. If

it is possible to find a vector xi of coefficients such that

‖fi − Dxi‖2 ≤ ǫ while ‖xi‖0 = S is satisfied, then we

conclude no presence of a sound object. However, if the above

relation is violated, we can assume additional components in

fi that are not correlated with elements of D. We scan the

signal f slice by slice and verify its representation in D.

III. SIMULATIONS

We present numerical results based on two classes of texture

sounds f : (heavy) rain and washing machine noise. In order

to give a proof of concept, we apply the suggested methods

to finding synthetic signals s which unambiguously qualify as

sound objects within the background signals; we use damped

sums of six different harmonics of 0.5 seconds length. The

SNR3 of the objects present in the texture sound is between

−5dB and −7.5dB. Note that the sound-files corresponding

to the examples as well as supplementary examples, codes and

extensions are available at the website homepage.univie.ac.at/

monika.doerfler/SoundObj.html.

A. Gabor Multiplier

For the Gabor multiplier approach, we choose slices of

approximately half a second (20480 samples) length with 75%
overlap. We use a standard tight Gabor frame with a Hann

window of length 1024 and 75% overlap. The spectrogram

of the test signal is depicted in the upper plot of Fig. 1. The

three harmonic and compactly supported synthetic signals are

clearly visible. The lower plot shows the deviation ‖|m|−1‖1
for the mask corresponding to the transition between two time-

slices. Based on the first, purely textural part of the signal,

λ is tuned in order to allow only negligible deviation of the

absolute value of m from 1. During our experiments, it turned

out that the success depends heavily on an appropriate choice

of λ, which was chosen to be 1.2 in the first example.

The second example, the distinct noise produced by a

washing machine, is a more complex texture sound. Here, the

situation is more difficult, since the ”stationarity” of the texture

is present on a larger scale, as visible in its spectrogram, shown

in Figure 2, upper display. For this example, we had to allow

for a much smaller λ = 0.01, i.e. for significant deviations

from a constant mask, in oder to obtain meaningful results.

Therefore, as opposed to the previous example, we obtain

much higher values of the deviation ‖|m| − 1‖1 also for the

textural part. In Figure 3, we show two masks occurring in

the investigation of this example; it is clearly visible, that this

particular signal contains a lot of energy in low frequency

3We define the signal to noise ratio (SNR) by SNRdB =
10 log

10
(‖s‖2

2
/‖f‖2

2
), given in dB, by where f is the background signal,

which can be seen as ”noise” in which s, the sound object is to be traced.
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Fig. 1. Detection of sound objects in background noise (Rain) using Gabor
multipliers approach.
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Fig. 2. Detection of a sound object in background noise (Washing machine)
using Gabor multipliers approach.

bands, with a certain periodicity (also audible in the signal).

It is quite obvious that, without taking these changes of energy

into account, no meaningful transition can be expected. On the

other hand, inspection of the part of the mask that is related to

the sound object has a clear local persistence in time which the

texture part lacks, but which is typical for harmonic signals.

It is planned to exploit this kind of a priori knowledge - or

assumption - about the objects one is interested in, in order

to improve the method’s success and reliability. In particular,

the models introduced as structured or social sparsity, cp. [6],

[11], show promising results in first experiments and will be

further exploited.
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Fig. 3. Change of consecutive masks: between texture slices and between
object slices; values are in dB.

B. Sparse Dictionary Representation

We applied the second, dictionary-based method to the

signals presented in the previous section; we chose time-

slices of 256 samples length and 50% overlap. It turned out

during the experiments, that, in the evaluation step, smaller

overlap is possible and does not deteriorate the results, since

the time-resolution given by the slice-length of about 6ms

is fine enough. The resulting evaluation criteria, namely

approximation error for a maximum number of atoms and

level of sparsity for a chosen error tolerance, are shown in

Figure 4. Obviously, both criteria show significant deviation

from the texture level during the duration of the sound

objects. It should be noted that the amplitude of the time-

signals don’t visibly increase during the sound objects, also

cf. homepage.univie.ac.at/monika.doerfler/SoundObj.html to listen

to the audio files.

IV. DISCUSSION AND PERSPECTIVES

We presented two methods for sound object tracing in

background, texture signals. Both methods exploit the assumed

quasi-stationary character of texture signals and decide that a

’foreign’ sound object should be present, if that stationarity is

lost. The suggested methods and numerical experiments need

to be extended to a much larger samples of both texture sounds

and sound objects in order to draw reliable conclusions about

the situations in which the proposed models give satisfactory

results; furthermore, there are several open questions as to

how long the slices of the signal should be, in both the sparsity

method and Gabor multipliers, and what kind of Gabor frames

to choose for the latter approach. These questions will be

investigated in detail in ongoing work on the topic and results

will be presented on the companion website.
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