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Abstract—The concept of the number of degrees of freedom of
band-limited signals is discussed. Classes of band-limited signals
obtained as a result of successive application of the truncated
direct and truncated inverse Fourier transforms are shown to
posses a finite number of degrees of freedom.

I. INTRODUCTION

Let a signal f be Ω-band-limited, i.e. representable as

f(t) =
1

2π

∫ Ω

−Ω

F (ω) eitω dω. In accordance with the famous

Whittaker–Kotel’nikov–Shannon (WKS) sampling theorem [1]
f can be fully reconstructed from its uniformly distributed

samples f
(
πk

Ω

)
, k = 0,±1,±2, . . . ,

f(t) =

∞∑
k=−∞

f

(
πk

Ω

)
sin Ω

(
t− πk

/
Ω
)

Ω
(
t− πk

/
Ω
) . (1)

A common notion in the field is that, upon a certain duration
T , this signal has no more than 2K + 1, K = [ΩT/(2π)]1

degrees of freedom, since it can be completely recovered from
just 2K + 1 of its samples taken at the points kπ/Ω ∈
(−T/2, T/2), as if f(t) ≡ 0 outside (−T/2, T/2). This notion
is refuted by the fact that a function cannot be simultaneously
time- and band-limited [2].

The function fK obtained from the sampling formula (1)
by truncating the series to a finite number of terms, |k| ≤
K, is Ω-band-limited and coincides with f at each sampling
point tk, k = 0,±1, . . . ,±K. On the other hand, at any other
time moment t the difference between f(t) and fK(t) may be

arbitrary large, depending on the values f
(
πk

Ω

)
from outside

the interval (−T/2, T/2).
Nonetheless, for band–limited functions essentially concen-

trated inside a finite time interval the concept of the number of
degrees of freedom (NDF) makes a certain sense. For various
definitions of signal concentration in the time domain we refer
the reader to the monograph [3] and the literature cited therein.
The sinc-function translates themselves are not highly con-
centrated inside this interval, therefore the classical sampling
formula does not enable such a definition. Instead another
formulation of the sampling theorem given by G. Walter and
X. Shen in [4] will be helpful. The newly formulated sampling

1here square brackets denote the integer part

theorem employs the eigenfunctions of the finite, i.e. truncated
to a finite interval, Fourier transform (TFT)2. The NDF of an
essentially concentrated in the time domain signal can then
be defined as the number of the TFT eigenfunctions which
suffices to well-approximate this signal.

With a help of the sampling formula one can easily synthe-
size a signal of any desired NDF. This means that without an
additional knowledge about the signal, the number of signal
samples contributing significantly to the sampling series is not
known a priori. However for particular classes of band–limited
functions the upper bounds on this number and therewith on
the NDF can be effectively computed. Thus in [4] it was shown
that, if an Ω-band-limited signal is highly concentrated in
IT = (−T/2, T/2) and its Fourier transform is sufficiently
smooth, it has [ΩT/π] + 1 degrees of freedom, the same
number as the above erroneous explanation would give.

Yet the smoothness of the Fourier transform seems to be
a too rigorous requirement. Even the TFT eigenfunctions,
though proved to be the most concentrated in the time domain
among other band-limited functions, have jumps in the fre-
quency domain. The Fourier transforms of the convolutions of
the Ω-band-limited TFT eigenfunctions are also discontinuous.
Still they are highly concentrated in the interval (−2Ω, 2Ω)
and require no more than 2Ω2/π + 1 of

√
2Ω-band-limited

TFT eigenfunctions for reconstruction via the Walter-Shen
sampling formula [5].

In the present work we shall introduce a wide variety of
classes of band-limited functions with a given NDF, one of
them includes the convolutions of the TFT eigenfunctions
as particular examples. The relevant upper bounds for the
truncation error of the sampling series will be derived. We
shall also touch upon a possible generalization to higher
dimensions.

We begin with a brief survey of known results related to
TFT eigenfunctions.

II. BAND–LIMITED FUNCTIONS

As is well-known [1], the Paley–Wiener space,

PWa :=

{
f(x)

∣∣∣f(x) =
1

2π

a∫
−a

ei xyg(y) dy, g ∈ L2(−a, a)

}
.

2Since the acronym FFT stands commonly for the fast Fourier transform,
we use the abbreviation TFT for the finite Fourier transform.
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is a reproducing kernel Hilbert space with the reproducing
kernel

G(x, y) :=
sin a (x− y)

π(x− y)
.

This follows from the Fourier inversion formula F̂ [f ] (y) =
χ̂a(y) g(y), which holds for all functions from PWa. Here
F̂ [·] stands for the Fourier transform and χ̂a is the operator
of multiplication by χa(·), whereas χa(·) is the characteristic
function of the interval Ia

χ
a
(x) =

{
1, x ∈ Ia,
0, x ∈ R \ Ia

.

The classical WKS sampling formula

f(x) =

∞∑
k=−∞

f

(
πk

a

)
sin a

(
x− πk

/
a
)

a
(
x− πk

/
a
) , for ∀f ∈ PWa,

(2)
reflects the fact that the sequence of point evaluation function-

als G
(
π k

a
, y

)
, k = 0,±1, . . . , forms an orthonormal basis

in PWa [1].
Yet Eq. (2) is easy to obtain via the direct integration of the

Fourier expansion of the associated function g ∈ L2(Ia):

g(y) =

√
1

2a

∞∑
k=−∞

gk e
−iπky/a =

1

2a

∞∑
k=−∞

f

(
πk

a

)
e−iπky/a,

(3)
since the Fourier coefficients gk, k = 0, 1, 2, . . ., are

gk :=

√
1

2a

a∫
−a

ei πk y/ag(y) dy =

√
1

2a
f

(
πk

a

)
.

The series in the right–hand side of Eq. (3) converges in
L2(−a, a). As a consequence, the sampling formula converges
both in the L2–norm and uniformly on R.

III. PROLATES—EIGENFUNCTIONS OF THE TRUNCATED
FOURIER TRANSFORM

Another sampling formula invented and studied in [4] is
written in terms of the TFT eigenfunctions. The TFT operator
F̂a is first introduced as acting on L2(−a, a) by

F̂a[g](x) =
1

2π

a∫
−a

ei xyg(y) dy, x ∈ (−a, a). (4)

Its eigenfunctions ψl(a, x) = ψl(x) defined at x ∈ (−a, a)
via the equation

µl ψl(x) =
1

2π

a∫
−a

ei xyψl(y) dy, l = 0, 1, . . . , (5)

are ordered according to the absolute magnitude of the asso-
ciated eigenvalues, |µ0| > |µ1| > . . . . One can choose ψl to
be real valued and normalized, so that

‖ψl‖2a =

a∫
−a

(ψl(x))
2
dx = 1.

Eqs. (4), (5) are then used to extend the functions in the
left hand side to the entire real axis. Therewith an operator
is defined that maps L2(Ia) on the Paley–Winer space PWa.
We shall keep for this operator the same notation F̂a, similarly
the extensions of the TFT eigenfunctions are hereafter denoted
by ψl, since it shall not cause any ambiguity. One can also
define F̂a as the composition F̂a := F̂ ◦ χ̂a : L2(R)→ PWa.
Evidently ψl extended to R are the eigenfunctions of F̂ ◦ χ̂a.

The double definition of the TFT operator provides a double
set of properties of its eigenfunctions. Thus functions ψl are
pairwise orthogonal both on the finite interval Ia and on R,

a∫
−a

ψl(x)ψs(x) dx = δls ,

∞∫
−∞

ψl(x)ψs(x) dx =
1

γl
δls,

where γl := |µl|2/2π. In addition to that ψl form a basis both
in L2(−a, a) and in PWa.

Besides, for all l = 0, 1, · · · ,

1

2π

a∫
−a

e−ixy
a∫
−a

eiξyψl(ξ)dξ =

a∫
−a

sin a (x− ξ)
π(x− ξ)

ψl(ξ) dξ = γlψl.

This means that ψl are eigenfunctions of the operator Ĝa :
L2(Ia)→ L2(Ia),

Ĝa[g](x) :=

a∫
−a

sin a (x− y)

π(x− y)
g(y) dy, g ∈ L2(Ia), (6)

whereas γl are the corresponding eigenvalues, here γl are the
same as defined above.

Like Eq. (5), the latter equation remains valid outside the
interval Ia. Note that Ĝa = F̂−1 ◦ χ̂a ◦ F̂ ◦ χ̂a. In other words,
Ĝa is the truncated direct Fourier transforms followed by the
truncated inverse Fourier transform. The operator Ĝa plays a
key role in the further consideration.

Remarkable properties of the TFT eigenfunctions have
been widely discussed, see e.g. [2], [4], [6], [7]. Below
we shall cite only those properties which are important for
the present analysis. Among others, of special interest is
the concentration property of the TFT eigenfunctions [2],
namely that in the Paley-Wiener space PWa the function
ψ0 is the most concentrated inside the interval Ia, since

γ0 =
‖ψ0‖Ia
‖ψ0‖R

yields the largest possible value for the ratio

‖f‖Ia
‖f‖R

. In general, denote by PW l
a the orthogonal comple-

ment to Span{ψ0, ψ1, . . . , ψl−1} in PWa, then

γl =
‖ψl‖Ia
‖ψl‖R

= max
f∈PW l

a

‖f‖Ia
‖f‖R

.

An exceptional feature of eigenvalues γl is that γl are close
either to zero or to one, and the number of γl close to one

does not exceed L =

[
2 a2

π

]
[6].

Thus, one can see a qualitative difference between the TFT

eigenfunctions of indices l <
2 a2

π
and those of l >

2 a2

π
:
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although each ψl is the most concentrated among functions

from PW l
a, only the first

[
2 a2

π

]
are really concentrated

on Ia. The integral equation (5) does not account for this
difference. In order to understand this feature, we recall that
after an appropriate scaling TFT eigenfunctions coincide with
the prolate spheroidal wave functions of zero order [2], and
they are therefore often referred to as prolates.

IV. PROLATE SPHEROIDAL WAVE FUNCTIONS

A representative overview of the prolate spheroidal wave
functions (PSWF) is given in [8] (see also the literature cited
therein). At any point ξ 6= ±1, a PSWF of zero order S(c, ξ) =
S(ξ) obeys the prolate spheroidal wave equation

d

dξ
(1− ξ2)

d

dξ
S +

[
λ+ c2(1− ξ2)

]
S = 0, (7)

remaining bounded at the singular points ξ = ±1,

|S(ξ)| <∞, ξ → ±1. (8)

Both singularities at the points ξ = ±1 are regular and limit-
point. In the neighborhood of ξ = 1 Eq. (7) has two linearly
independent solutions [8]

S(1)(ξ) ∼ const, S(2)(ξ) ∼ ln(1− ξ2), ξ → 1,

of which only the first one is bounded.
Solutions of Eq. (7) which are bounded at both singu-

lar points simultaneously exist not for all λ. Eq. (7) and
the boundedness conditions (8) define a self-adjoint singular
Sturm–Liouville eigenvalue problem on the interval (−1, 1).
The eigenfunctions Sl(ξ) of this problem are called angular
PSWF. They are ordered by the number of internal zeros and

normalized by the condition ‖Sl‖(−1,1) =
1∫
−1

S2
l (ξ) dξ = 1.

For the associated eigenvalues one can prove that

−c2 < λ0 < λ1 < . . . < λl < . . . .

At infinity any solution of Eq. (7) vanishes as (1/ξ). In
particular, solutions bounded at ξ = 1 enjoy the asymptotic
behaviour

Sl(ξ) =
Al
cξ

cos

(
cξ − l + 1

2
π

)
+ O

(
1

ξ2

)
, ξ →∞. (9)

In what follows Al is chosen to match at ξ = ±1 the angular
function. A simple relation links then the functions Sl and ψl:

a =
√
c, ψl(a, x) =

1√
a
Sl

(
c,
x

a

)
, l = 0, 1, · · · . (10)

This means that the prolates ψl and the sinc-function trans-
lates have the same rate of vanishing at infinity, which seems
to contradict the concentration property of prolates. However
Eq. (7) gives us a key to eliminating the apparent contradiction.

As was shown in [9], the properties of solutions of Eq. (7)
depend dramatically on whether λ is positive or negative.
Below we add to the detailed analysis provided in [9] a few
more features explaining the concentration phenomenon. To
this end, we study the behavior of a bounded solution of

Eq. (7) inside the interval where the product of (1−ξ2) and the
potential Q(ξ) = λ+ c2(1− ξ2) is negative. For −c2 < λ < 0
this is the interval (ξT , 1), while for λ > 0 it is (1, ξT ), where
ξT =

√
1 + λ/c2 being the turning point of Eq. (7).

The following lemma is easy to prove.

Lemma 1. Let −c2 < λ < 0 and ξT be the turning point of
Eq. (7), so that Q(x) < 0 on the interval (ξT , 1). If S(ξ) is a
solution of Eq. (7) bounded at ξ = 1, then neither S(ξ) nor
S′(ξ) vanish inside the interval (ξT , 1).

Proof: On integrating Eq. (7) multiplied by S(·) over an
interval (ξ, 1), one obtains:

(1− ξ2)S′(ξ)S(ξ) =

1∫
ξ

{
Q(η)S2(η)− (1− η2) [S′(η)]

2
}
dη.

The right hand side above is strictly negative on (ξT , 1).
As is readily seen, the logarithmic derivative of a bounded

solution, β(ξ) = S′(ξ)/S(ξ), satisfies the equation

(1−ξ2)β′ = −Q(ξ)+2 ξβ−β2 (1−ξ2), ξ ∈ (ξT , 1). (11)

Besides, the expansion β(ξ) = λ/2 + (c2 + λ/2 + λ2/4)(1−
ξ)/2 + . . . holds near the point ξ = 1 [10]. Straightforward
but rather tiresome analysis of the direction field in (11) shows
that for ξ ∈ (ξT , 1)

β(ξ) <
Q(ξ)

ξ +
√
ξ2 − (1− ξ2)Q(ξ)

<
λ+ c2(1− ξ2)

1 +
√

1− λ
< 0.

This means that S(ξ) decays exponentially fast in (ξT , 1).
Thus, the smaller the index l of the eigenvalue λl, the higher
the ratio

Sl(ξT )

Sl(1)
= − exp

{∫ 1

ξT

βl(ξ) dξ

}
,

hence the smaller the factor Al in (9) and therewith the smaller
the contribution from outside the interval(−1, 1) to the total
norm ‖Sl‖R.

Similar analysis done for λ > 0 shows that the factor Al
grows up with l in accordance with the exponential increase
of Sl on (1, ξT ). As a result, the contribution from the interval
(−1, 1) to ‖Sl‖R becomes negligibly small as l→∞.

Note that the number of negative eigenvalues λl of the prob-
lem (7)–(8) was proved in [9] not to exceed 2c/π = 2a2/π.

V. WALTER-SHEN SAMPLING FORMULA AND THE RANGE
OF THE OPERATOR Ĝa

In terms of prolates the sampling formula becomes [4]

f(x) =
π

a

∞∑
k=−∞

f

(
πk

a

) ∞∑
l=0

γl ψl

(
πk

a

)
ψl(x)

=
π

a

∞∑
l=0

γl

{ ∞∑
k=−∞

f

(
πk

a

)
ψl

(
πk

a

)}
ψl(x). (12)

Here, the order of double summation is interchangeable, both
double series converging in L2-norm and uniformly on R.
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Because of the double summation, the sampling formu-
lae (12) look more cumbersome than (2), however in practical
calculations series (12) may be more advantageous than the
classical one. Moreover, the following estimate, similar to that
of Lemma 4 in [4] (see also [3]), allows one to truncate the
summation on k to a few terms:

Θl := γl
∑

|k|>a2/π

ψ2
l

(
πk

a

)
≤ C

√
γl(1− γl). (13)

One sees that the contribution from samples ψl(πk/a), |k| >
a2/π, is small both for l < 2a2/π and for l > 2a2/π.

Consider the range of the operator Ĝa, Rg(Ĝa). Clearly,
prolates ψl are in Rg(Ĝa).

Let f(x) ∈ Rg(Ĝa), i.e. f(x) =

a∫
−a

sin a (x− y)

π(x− y)
g(y) dy

for some g ∈ L2(Ia). Denote the Fourier coefficients of the
functions f and g in the basis of prolates by f̃l and g̃l,
respectively. Then the truncation error caused by neglect of
the contribution from ψl at l > L is

εL :=
∥∥∥f −∑

l≤L

f̃lψl

∥∥∥
R
≤ √γL+1

∥∥∥g −∑
l≤L

g̃lψl

∥∥∥
Ia
,

which is very small, provided that L > 2a2/π.
In view of (13), the truncation of the inner sum in (12) at

some K > a2/π causes the error

ε2
L,K :=

∥∥∥fL(x)− π

a

∑
l≤L

∑
|k|≤K

γl f

(
πk

a

)
ψl

(
πk

a

)
ψl(x)

∥∥∥2

R

≤
∑
|k|>K

[
f

(
πk

a

)]2 ∑
l≤L

Θl.

Summarizing, we conclude that the NDF of functions in
Rg(Ĝa) is [2a2/π] + 1.

VI. SAMPLING IN Rg (GΩ,T )

The range of the operator Ĝa is not the only class of
band-limited functions for which the above truncation error
estimates hold. Consider the operator GΩ,T :

GΩ,T [g] (x) :=
1

2π
F̂−1 ◦ χ̂Ω ◦ F̂ ◦ χ̂T [g] (x)

=

T∫
−T

sin Ω (x− y)

π(x− y)
g(y) dy.

On substituting into the above equation new variables η =√
Ω/T y and ξ =

√
Ω/T x, we obtain

f̃(ξ) = f

(√
Ω

T
ξ

)
=

a∫
−a

sin a (ξ − η)

π(ξ − η)
g

(√
T

Ω
η

)
dη ,

where a2 = ΩT . As a result, the function f̃(ξ) ∈ Rg (Ga)
and has [2ΩT/π] + 1 degrees of freedom.

The convolution of two TFT eigenfunctions Φnm(x) :=
∞∫
−∞

ψn(a, x− y)ψm(a, y) dy is a–band–limited and hence

Φnm(x) ≈ π
a

∑
l≤L, |k|≤K

γl (a) Φnm

(
πk

a

)
ψl

(
a,
πk

a

)
ψl(a, x) .

On the other hand, one can prove that Φnm(x) ∈ Rg (Ga,2a).
Therefore Φ̃nm(x) = Φnm(x/

√
2) ∈ Rg

(
G√2a

)
and

Φnm(x) ≈ π√
2a

∑
l,|k|≤4a2/π

γl

(√
2a
)

Φnm

(
πk

2a

)

× ψl

(√
2a,

πk√
2a

)
ψl

(√
2a,
√

2x
)
.

The latter sampling formula shows better accuracy than the
previous one, even if the number of samples and prolates
involved in calculations is the same.

VII. GENERALIZATION TO HIGHER DIMENSIONS

In [12] the eigenfunctions of the 2D Fourier transform
truncated to a circle of finite radius a were represented
through the eigenfunctions of the truncated Hankel transforms
(THT) of different angular numbers m. Recently in [11] the
number of THT eigenvalues close to one was proved not to
exceed a2/π−m/2. The same number defined the NDF of a
class of Hankel-band-limited functions analogous to Rg

(
Ĝa
)
.

This results can easily be generalized to the case of higher
dimensions in accordance with the discussion in [13].
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[4] G. G. Walter, X. Shen, Sampling With Prolate Spheroidal Wave Functions,
Sampl. Theory Signal Image Proc. 2(1) (2003) 25–52.
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