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Università degli Studi di Perugia
Perugia, 06125 Italy

Email: cluni@strutture.unipg.it

Danilo Costarelli
Dipartimento di Matematica

e Fisica, Università degli Studi
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Abstract—In this paper, we present the theory and some
new applications of linear, multivariate, sampling Kantorovich
operators. By means of the above operators, we are able to
reconstruct pointwise, continuous and bounded signals (func-
tions), and to approximate uniformly, uniformly continuous
and bounded functions. Moreover, the reconstruction of signals
belonging to Orlicz spaces are also considered. In the latter
case, we show how our operators can be used to approximate
not necessarily continuous signals/images, and an algorithm for
image reconstruction is developed. Several applications of the
theory in civil engineering are obtained. Thermographic images,
such as masonries images, are processed to study the texture of
the buildings, thus to separate the stones from the mortar and
finally a real-world case-study is analyzed in terms of structural
analysis.

I. INTRODUCTION

In [1] the authors introduced the linear sampling Kan-
torovich operators and studied, in particular, their convergence
in the general setting of Orlicz spaces, in one-dimesional case.
Later these results have been extended in [8] to the multivariate
setting, in [12], [9] to the nonlinear case and in a more general
context in [13], [2].

In this paper, we obtain applications to civil engineering by
using the linear multivariate sampling Kantorovich operators
(Sw)w>0, defined by

(Swf)(x) :=
∑
k∈ZZn

χ(wx− tk)

[
wn

Ak

∫
Rw

k

f(u) du

]
, (I)

for every x ∈ IRn, where f : IRn → IR is a locally integrable
function such that the above series is convergent for every x ∈
IRn. Here χ : IRn → IR is a kernel function satisfying suitable
properties, tk = (tk1 , ..., tkn) is a vector where (tki)ki∈ZZ ,
i = 1, ..., n is a sequence of real numbers with some properties
and where

Rwk :=

[
tk1
w
,
tk1+1

w

]
×
[
tk2
w
,
tk2+1

w

]
× ...×

[
tkn
w
,
tkn+1

w

]
,

w > 0 and Ak = ∆k1 ·∆k2 · ... ·∆kn with ∆ki := tki+1− tki ,
i = 1, ..., n. For the study of the above family (I), see [8].
The sampling series (I) represents a Kantorovich version of
the generalized sampling operators introduced by P.L. Butzer
and his school at Aachen (see e.g. [4]). Here, in place of the
sample values f(k/w) one has an average of f in a small

pluri-rectangle containing k/w (here instead of k, we have a
general sequence tk, obtaining a non uniform sampling). This
situation very often occurs in Signal Processing, when one
cannot match exactly the ”node” tk/w: this represents the so
called ”time-jitter error”. Therefore our theory reduces time-
jitter errors calculating the information in a neighborhood of
a point rather than exactly at that point.
For the sampling Kantorovich operators (I), we study the
pointwise convergence for continuous and bounded func-
tions, the uniform convergence, for uniformly continuous and
bounded functions, and the modular convergence, for functions
belonging to Orlicz spaces (see e.g. [3]). The latter case, allows
to treat the case of Lp-signals, i.e., not necessarily continuous
signals; note that in multivariate setting, when one deals with
images, discontinuities are concentrated in the contours or
edges of the image itself, in terms of jumps of grey levels (see
[8], [9]). To show the versatility of our theory, we study various
applications to civil engineering images. In this subject the
images, in particular thermographic images, are used to make
non-invasive investigations of structures, to analyze the story
of the buildings or of the building walls, to make diagnosis and
monitoring buildings, and to make structural measurements.
The thermography is a remote sensing technique, performed by
the image acquisition in the infrared. Moreover, these images
are also used in civil engineering for image texture, i.e., for
the separation between the bricks and the mortar in masonries
images. Unfortunately, the direct application of the image
texture algorithm to the thermographic images, can produce
errors, as an incorrect separation between the bricks and the
mortar. Then, we use the sampling Kantorovich operators to
process the thermographic images before to apply the texture.
In this way, the result produced by the texture becomes more
refined and therefore we can apply structural analysis to a real-
world case-study after the calculation of the various parameters
involved.

A. Approximation results

In this section, we treat the main approximation results
for the multivariate sampling Kantorovich operators. In what
follows, we denote by tk = (tk1 , ..., tkn) a vector where each
(tki)ki∈ZZ , i = 1, ..., n is a sequence of real numbers with
−∞ < tki < tki+1 < +∞, limki→±∞ tki = ±∞, for every
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i = 1, ..., n, and such that there exist ∆, δ > 0 for which
δ ≤ ∆ki := tki+1 − tki ≤ ∆, for every i = 1, ..., n.

A function χ : IRn → IR will be called a kernel if it satisfies
the following properties:
• (χ1) χ ∈ L1(IRn) and is bounded in a neighborhood of

0 ∈ IRn;
• (χ2) For every u ∈ IRn,

∑
k∈ZZn

χ(u− tk) = 1;

• (χ3) For some β > 0,

mβ,Πn(χ) = sup
u∈IRn

∑
k∈ZZn

∣∣χ(u− tk)
∣∣·∥∥u− tk∥∥β2 < +∞,

where ‖ · ‖2 denotes the usual Euclidean norm.
We may now state the following theorem for the linear
multivariate sampling Kantorovich operators (I) based upon
the kernel function χ.

Theorem 1: Let f : IRn → IR be a continuous and bounded
function. Then, for every x ∈ IRn,

lim
w→+∞

(Swf)(x) = f(x).

In particular, if f : IRn → IR is uniformly continuous and
bounded, then

lim
w→+∞

‖Swf − f‖∞ = 0,

where ‖ · ‖∞ denotes the usual sup-norm.
We now recall some basic fact concerning Orlicz spaces,

see e.g. [11], [3].
Let ϕ : IR+

0 → IR+
0 be a ϕ-function, i.e. ϕ satisfies the

following assumptions:
1) ϕ (0) = 0, ϕ (u) > 0 for every u > 0;
2) ϕ is continuous and non decreasing on IR+

0 ;
3) limu→∞ ϕ(u) = +∞.

For a fixed ϕ-function ϕ, one can consider the functional Iϕ :
M(IRn) → [0,+∞], where M(IRn) denotes the set of all
measurable functions f : IRn → IR. We define

Iϕ [f ] :=

∫
IRn

ϕ(|f(x)|) dx, (f ∈M(IRn)) .

The Orlicz space generated by ϕ is defined by

Lϕ(IRn) := {f ∈M (IRn) : Iϕ[λf ] <∞, for some λ > 0} .

We can introduce in Lϕ(IRn), a notion of convergence, called
”modular convergence”, which induces a topology (modular
topology) on the space ([11], [3]). Namely, we will say that a
net of functions (fw)w>0 ⊂ Lϕ(IRn) is modularly convergent
to a function f ∈ Lϕ(IRn) if

lim
w→+∞

Iϕ [λ(fw − f)] = 0

for some λ > 0.
Now, by means of a modular estimate for the operators (I)

and using a density result, we may state the following modular
convergence theorem for the sampling Kantorovich operators
(based upon the kernel function χ) in Orlicz spaces.

Theorem 2: Let ϕ be a convex ϕ-function. For every f ∈
Lϕ(IRn), there exists λ > 0 such that

lim
w→+∞

Iϕ[λ(Swf − f)] = 0.

Now, choosing ϕ(u) = up, 1 ≤ p < ∞, we have Lϕ(IRn) =
Lp(IRn) and Iϕ[f ] = ‖f‖pp, where ‖·‖p is the usual Lp-norm.
Then, from Theorem 2 we obtain the following corollary.

Corollary 1: For every f ∈ Lp(IRn), 1 ≤ p < +∞,

lim
w→+∞

‖Swf − f‖p = 0.

The corollary above, allows us to reconstruct Lp-signals (in
Lp-sense), therefore not necessarily continuous. Other exam-
ples of Orlicz spaces for which the theory can be applied, are
given by the Zygmund spaces (or interpolation spaces) and by
the exponential spaces, see e.g. [11], [3], [1], [8].

B. The choice of the kernels

In the theory of sampling Kantorovich operators an impor-
tant role is played by the kernels χ. A procedure to construct
examples of multivariate kernel is to use product kernels by
means of one-dimensional kernels. For a sake of simplicity, we
consider our operators in case of uniform sampling (tk = k),
and denote by χ1, ..., χn, the one-dimensional kernels χi :
IR→ IR satisfying conditions (χ1), (χ2) and (χ3) for n = 1.
In [4], [8] is proved that the multivariate function

χ(x) :=

n∏
i=1

χi(xi),

for every x = (x1, ..., xn) ∈ IRn, is a multivariate kernel for
our operators (Sw)w>0 satisfying the assumption of the theory.
Then, it is now sufficient to give examples of one-dimensional
kernels satisfying (χ1), (χ2) and (χ3). Remarkable examples
of kernels with compact support, are given by the well-known
central B-spline of order k ∈ IN , defined by

Mk(x) :=
1

(k − 1)!

k∑
i=0

(−1)i
(
k
i

)(
k

2
+ x− i

)k−1

+

.

where the function (x)+ := max {x, 0} denotes the positive
part of x ∈ IR (see [1], [12], [8]). Other well-known examples
of one-dimensional kernels are given by the Jackson-type
kernels, defined by

Jk(x) = cksinc2k(
x

2kπα
), x ∈ IR,

with k ∈ IN , α ≥ 1, for a suitable constant ck and where the
sinc-function is defined by

sinc(x) :=

{
1, x = 0,
sin(πx)

πx
, otherwise,

(see [5], [1]).
It is also possible to consider kernels which are not of

product type. For instance, one can take into consideration
radial kernels, i.e., functions for which the value depends on
the Euclidean norm of the argument only. Example of such a
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kernel can be given, for example, by the Bochner-Riesz kernel,
defined as follows

bα(x) := 2αΓ(α+ 1)‖x‖−(n/2)+α
2 B(n/2)+α(‖x‖2),

for x ∈ IRn, where α > (n− 1)/2, Bλ is the Bessel function
of order λ and Γ is the Euler function. For more details about
this matter, see e.g. [4].

C. Applications to Image Processing

In this section, we show how the multivariate sampling Kan-
torovich operators can be applied to process digital images, see
[8], [9]. Every bi-dimensional grey scale image A (matrix)
can be modeled as a step function I , with compact support,
belonging to Lp(IR2), 1 ≤ p < +∞. The most natural way
to define I is:

I(x, y) :=

m∑
i=1

m∑
j=1

aij · 1ij(x, y) ((x, y) ∈ IR2),

where 1ij(x,y), i, j = 1, 2, ...,m, are the characteristics
functions of the sets (i− 1, i]× (j− 1, j] (i.e. 1ij(x,y) = 1,
for (x, y) ∈ (i − 1, i] × (j − 1, j] and 1ij(x,y) = 0
otherwise). Note that the above function I(x, y) is defined
in such a way that, to every pixel (i, j) it is associated the
corresponding grey level aij . Then, we can now consider the
family of bivariate sampling Kantorovich operators applied to
the function I , (SwI)w>0 (for some kernel χ) that approximate
I in Lp-sense. Now, in order to obtain a new image (matrix)
that approximates the original one, it is sufficient to sample
SwI (for some w > 0) with a fixed sampling rate. In particular,
we can reconstruct the approximating images (matrices) taking
into consideration different sampling rates and this is possible
since we know the analytic expression of SwI .

Obviously, if the sampling rate is chosen higher than the
original sampling rate, one can get a new image that has a
better resolution than the original one’s. The above procedure
has been implemented by using MATLAB, in order to obtain
an algorithm based on the multivariate sampling Kantorovich
theory.

D. Applications to civil engineering images

In this section, we propose some new applications of the
algorithm, based on the multivariate sampling Kantorovich
operators, to civil engineering images.

The most widely used images in this areas are the ther-
mographic images, largely used to make diagnosis and mon-
itoring buildings, and to make structural measurements. The
thermography is a remote sensing technique, performed by the
image acquisition, in the infrared. The thermographic images
are obtained by the thermograph, that in practice consists in
a thermal camera for detecting radiation in the infrared range
of the electromagnetic spectrum, and perform measurements
related with the emission of this radiation. This tool is able to
detect the temperatures of the bodies analyzed by measuring
the intensity of infrared radiation emitted by the body under
examination. All the objects at a temperature above absolute
zero emit radiation in the infrared range. The thermography

allows to avoid the use of invasive techniques of investigation
for buildings. Moreover, these images are also used in civil
engineering for image texture, i.e., for the separation between
the bricks and mortar in masonries images. The image texture
algorithm performs as follows: first of all we apply a median
filter to the image using a suitable mask, then the image
is converted into a black and white image by means of a
suitable thresholding, in order to obtain a consistent separation
of the phases; the area consisting of white pixels denote
the inclusions (stones or bricks) and the remaining areas of
black pixels denotes the mortar joints. Finally, morphological
operators are used to enhance the quality of the separation
of the phase: closing of the area to eliminate salt-and-pepper
noise, erosion and dilation to smooth the contours of the
inclusions. The image obtained is characterized by a consistent
separation of phases, where each stone is surrounded by mortar
joints and unrealistic conjunction of inclusions is avoided as
much as possible (see e.g. [6]).

The direct application of the image texture algorithm to the
thermographic images, can produce errors (see e.g. Figure 2
(left) and (right)), as an incorrect separation between the bricks
and the mortar. Then, we can use the sampling Kantorovich
operators (see in Figure 1 (left) for the original termographic
image of a masonry, and Figure 1 (right) for a reconstruction)
to process the thermographic images before to apply the
texture, in order to obtain images suitable for the application of
the texture algorithm (see e.g. the comparison between Figure
2 (left) and (right)).

Fig. 1. Recontruction of the original image (left, 75 × 75 pixel) by the
sampling Kantorovich operators with the bivariate Jackson kernel with k = 4
and α = 1, for w = 40 (right, 450 × 450 pixel)

In order to perform structural analysis, the mechanical
characteristics of an homogeneous material equivalent to the
original heterogeneous material are sought (see e.g. [7]). The
equivalence is in the sense that, when subjected to the same
boundary conditions, the overall response in terms of mean
values of stresses and deformations is the same, see e.g.
[10]. In particular, the equivalent elastic properties taking into
account the effective characteristics of the micro-structure can
be estimated by a suitable choice of two kinds of boundary
conditions: i) in terms of displacements (essential boundary
conditions); ii) in terms of forces (natural boundary condi-
tions). In order to solve the boundary condition problem, the
Finite Element Method (F.E.M.) is used.
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Fig. 2. On the left, we have the image texture of the original image of
Figure 1 (left). On the right, we have the image texture of Figure 1 (right),
reconstructed by the sampling Kantorovich operators.

The estimated mechanical properties can be used to analyze
a real-world case-study. In particular the proposed approach
allows to overcome some difficulties, that arise when dealing
with the vulnerability analysis of existing structures, which
are: i) the knowledge of the actual geometry of the walls (in
particular the identification of hidden doors and windows); ii)
the identification of the actual texture of the masonry and the
distribution of inclusions and mortar joints, and from this iii)
the estimation of the elastic characteristics of the masonry.
It is noteworthy that, for item i) the engineer has limited
knowledge, due to the lack of documentation, while for items
ii) and iii) he usually use tables proposed in technical manuals
and standards which however give large bounds in order to
encompass the generality of the real masonries.

E. Future developments

A future development of the present paper is to study appli-
cations of the algorithm based on the sampling Kantorovich
operators to biomedical images. In biomedicine, images cover
a fundamental role for the clinical diagnosis, surgery (En-
dovascular aneurysm repair - EVAR), and for the patient
follow up. For this purpose, it reveals of a certain importance
that the contours of the biomedical images are clearly visible.
Then becomes important having at disposal an algorithm for
image reconstruction and enhancement. Our aim is to treat
images in the field of Vascular Surgery, in collaboration with
a group of radiologists and vascular surgeons of the sections of
Vascular and Endovascular Surgery and Diagnostic Radiology
and Interventional of the University of Perugia. In particular
our aim is to apply our algorithm to images related to the
aneurysmal aortic and steno-obstructive pathology of epiaortic
and peripheral vessels in order to improve the medical diag-
nosis.

II. CONCLUSION

In this paper, we present the theory of the multivariate
sampling Kantorovich operators. Approximation results are
given in various settings. Applications of the theory to Image
Processing are also shown. In particular, new applications of
the algorithm based on the sampling Kantorovich operators to
civil engineering images are obtained. The applications related

to image texture algorithm is significant, and of practical utility
in seismic engineering.
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