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ABSTRACT

We present a performance analysis for image registration with gradient
descent methods. We consider a multiscale registration setting where
the global 2-D translation between a pair of images is estimated by
smoothing the images and minimizing the distance between their in-
tensity functions with gradient descent. We focus in particular on the
effect of low-pass filtering on the alignment performance. We adopt an
analytic representation for images and analyze the well-behavedness
of the distance function by estimating the neighborhood of translations
for which the distance function is free of undesired local minima. This
corresponds to the set of translation vectors that are correctly com-
putable with a simple gradient descent minimization. We show that the
area of this neighborhood increases at least quadratically with the filter
size, which justifies the use of smoothing in image registration with
local optimizers. We finally use our results in the design of a regu-
lar multiscale grid in the translation parameter domain that has perfect
alignment guarantees.

Keywords— Image registration, image smoothing, gradient-
descent, performance analysis.

1. INTRODUCTION

The estimation of the transformation that best aligns two images is
one of the important problems of image processing. The necessity for
registering images arises in many different applications; e.g., image
analysis and classification [1], [2], stereo vision [3], motion estimation
for video coding [4]. Many registration techniques adopt, or can be
coupled with, a multiscale hierarchical search strategy. In hierarchi-
cal registration, reference and target images are aligned by applying
a coarse-to-fine estimation of the transformation parameters, using a
pyramid of low-pass filtered and downsampled versions of the images.

In this work, we analyze the effect of smoothing on the performance
of registration. It is commonly admitted that smoothing an image pair
is helpful for overcoming the undesired local minima of the distance
function between images. In practice, filtering is commonly used in hi-
erarchical registration and motion estimation methods [4]. However, to
the best of our knowledge, the analytical relation between filtering and
the well-behavedness of the image dissimilarity function has not been
extensively studied. Most theoretical results in the image registration
literature investigate how image noise affects the registration accuracy,
e.g., [5], [6]. However, the analysis of the effect of smoothing on the
registration performance has generally been given less attention in the
literature. Some of the existing works examine how smoothing influ-
ences the bias on the registration with gradient-based methods [5], [7].
Also, there are some results in scale-space theory that examine the vari-
ation of the local minima of 1-D and 2-D functions with filtering [8],
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which however does not exactly have the same setting as in the image
registration problem.

In this paper, we consider a setting where the geometric transforma-
tion between the reference and target patterns is a global 2-D transla-
tion. In particular, we examine the neighborhood of translation vectors
in which the only local minimum of the distance function is also the
global minimum in the alignment problem. This neighborhood defines
the translations between a pair of images, which can be estimated cor-
rectly with a descent algorithm. We call this neighborhood the Single
Distance Extremum Neighborhood (SIDEN) of the reference pattern.
For the ease of derivations, we formulate the registration problem in the
continuous domain of square-integrable functions L2(R2) and adopt
an analytic and parametric model for the reference and target patterns.
We derive an analytic estimation of the SIDEN in terms of the pat-
tern parameters. Then, in order to study the effect of smoothing on
the registration performance, we consider the alignment of low-pass
filtered versions of the reference and target patterns and examine how
the SIDEN varies with the filter size. Our main result is that the vol-
ume (area) of the SIDEN increases at a rate of at least O(1 + ρ2) with
respect to the filter size ρ. This formally shows that, when the pat-
terns are low-pass filtered, a wider range of translation values can be
recovered with descent-type methods; hence, smoothing improves the
well-behavedness of the distance function. Finally, we demonstrate
the usage of our SIDEN estimate in sampling the translation parameter
domain to construct a grid such that any translation between the image
pair can be exactly recovered by locating the closest solution on the
grid and then locally refining this estimation with a descent method.
This can be achieved by adjusting the grid units with respect to the
SIDEN of the pattern.

2. IMAGE REGISTRATION ANALYSIS

2.1. Notation and Problem Formulation

Let p ∈ L2(R2) be a visual pattern. In order to study the image regis-
tration problem analytically, we adopt a representation of p in an ana-
lytic and parametric dictionary manifold

D = {φγ : γ = (ψ, τx, τy, σx, σy) ∈ Γ} ⊂ L2(R2). (1)

Here, each atom φγ of the dictionary D is derived from an ana-
lytic mother function φ by a geometric transformation specified by
the parameter vector γ, where ψ is a rotation parameter, τx and τy
denote translations in x and y directions, and σx and σy represent
an anisotropic scaling in x and y directions. Γ is the transforma-
tion parameter domain over which the dictionary is defined. Defin-
ing the spatial coordinate variable X = [x y]T ∈ R2×1, we will
refer to the mother function as φ(X). Then an atom φγ is given by
φγ(X) = φ(σ−1 Ψ−1 (X − τ)), where

σ =

»
σx 0
0 σy

–
, Ψ =

»
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

–
, τ =

»
τx
τy

–
.

(2)
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It is shown in [9] (in the proof of Proposition 2.1.2) that the lin-
ear span of a dictionaryD generated with respect to the transformation
model in (1) is dense in L2(R2) if the mother function φ has nontrivial
support (unless φ(X) = 0 almost everywhere). In our analysis, we
choose φ to be the Gaussian function φ(X) = e−X

TX = e−(x2+y2)

as it has good time-localization and it is easy to treat in derivations due
to its well-studied properties. This choice also ensures that Span(D)
is dense in L2(R2); therefore, any pattern p ∈ L2(R2) can be ap-
proximated inD with arbitrary accuracy. We assume that a sufficiently
accurate approximation of p with finitely many atoms inD is available

p(X) ≈
KX
k=1

λk φγk (X) (3)

where K is the number of atoms used in the representation of p, γk are
the atom parameters and λk are the atom coefficients.

Throughout the discussion, T = [Tx Ty]T ∈ S1 denotes a unit-
norm vector and S1 is the unit circle in R2. We use the notation tT
for translation vectors, where t ≥ 0 denotes the magnitude of the vec-
tor (amount of translation) and T defines the direction of translation.
We consider the squared-distance between the reference pattern p(X)
and its translated version p(X − tT ), which is the continuous domain
equivalent of the SSD measure that is widely used in registration meth-
ods. The squared-distance in the continuous domain is given by

f(tT ) = ‖p(X)−p(X−tT )‖2 =

Z
R2

(p(X)−p(X−tT ))2dX (4)

where the notation1 ‖.‖ stands for the L2-norm for vectors in L2(R2)
and the `2-norm for vectors in R2.

The global minimum of f is at the origin tT = 0. Therefore, there
exists an open neighborhood of 0 within which the restriction of f to
a ray tTa starting out from the origin along an arbitrary direction Ta is
an increasing function of t > 0 for all Ta. This allows us to define the
Single Distance Extremum Neighborhood (SIDEN) as follows.

Definition 1. We call the set of translation vectors

S = {0} ∪ {ωTT :T ∈ S1, ωT > 0, and

df(tT )

dt
> 0 for all 0 < t ≤ ωT}

(5)

the Single Distance Extremum Neighborhood (SIDEN) of p.

Note that the origin {0} is included separately in the definition of
SIDEN since the gradient of f vanishes at the origin and therefore
df(tT )/dt|t=0 = 0 for all T . The SIDEN S ⊂ R2 is an open neigh-
borhood of the origin such that the only stationary point of f inside
S is the origin. Therefore, when a translated version p(X − tT ) of
the reference pattern is aligned with p(X) with a local optimization
method like a gradient descent algorithm, the local minimum achieved
in S is necessarily also the global minimum.

Given a reference pattern p, we would like now to find an analytical
estimation of S. However, the exact derivation of S requires the calcu-
lation of the exact zero-crossings of df(tT )/dt, which is not easy to do
analytically. Instead, one can characterize the SIDEN by computing a
neighborhood Q of 0 that lies completely in S; i.e., Q ⊂ S. Q can be
derived by using a polynomial approximation of f and calculating, for
all unit directions T , a lower bound δT for the supremum of ωT such
that ωTT is in S. This not only provides an analytic estimation of the
SIDEN, but also defines a set that is known to be completely inside the
SIDEN. The regions S andQ are illustrated in Figure 1.

1Since it is clear from the context which one of these norms is meant, we
denote these two norms in the same way for simplicity of notation.

Q
S

δTωT

f(tT)

R2
0

Fig. 1. SIDEN S is the largest open neighborhood around the origin within
which the distance f is increasing along all rays starting out from the origin.
Along each unit direction T , S covers points ωTT such that f(tT ) is increasing
between 0 and ωTT . The estimate Q of S is obtained by computing a lower
bound δT for the first zero-crossing of df(tT )/dt.

2.2. Estimation of SIDEN

We now deriveQ in an analytic and parametric form. In the following,
we consider T to be a fixed unit direction in S1. We derive Q ⊂ S
by computing a δT , which guarantees that df(tT )/dt > 0 for all 0 <
t ≤ δT . In the derivation of Q, we need a closed-form expression for
df(tT )/dt. Since f is the distance between two patterns represented
in terms of Gaussian atoms, it involves the integration of the product of
pairs of Gaussian atoms. These integrations yield the following terms,
which are explained in more detail in [10]

Σjk :=
1

2

`
Ψj σ

2
j Ψ−1

j + Ψk σ
2
k Ψ−1

k

´
ajk :=

1

2
TT Σ−1

jk T, bjk :=
1

2
TT Σ−1

jk (τk − τj)

cjk :=
1

2
(τk − τj)T Σ−1

jk (τk − τj), Qjk :=
π |σjσk|e−cjkp

|Σjk|
.

Notice that ajk > 0 and cjk ≥ 0 since ‖T‖ = 1 and Σjk, Σ−1
jk are

positive definite matrices. By definition, Qjk > 0 as well. We are now
ready to state our result about the estimation of the SIDEN.

Theorem 1. The region Q ⊂ R2 is a subset of the SIDEN S of the
pattern p if Q = {tT : T ∈ S1, 0 ≤ t ≤ δT }, where δT is the only
positive root of the polynomial |α4|t3 − α3t

2 − α1 and

α1 =
KX
j=1

KX
k=1

λjλkQjk (2 ajk − 4 b2jk)

α3 =

KX
j=1

KX
k=1

λjλkQjk

„
−8

3
b4jk + 8 b2jk ajk − 2 a2

jk

«

α4 = −1.37

KX
j=1

KX
k=1

|λjλk|Qjk exp

 
b2jk
ajk

!
a
5/2
jk

are constants depending on T and on the parameters γk of the atoms
of p.

The proof of Theorem 1 is given in Appendix A.1 of [10], which is
an accompanying technical report. The proof applies a Taylor expan-
sion of df(tT )/dt, and derives a δT such that df(tT )/dt is positive for
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all t ≤ δT . Therefore, along each direction T , δT constitutes a lower
bound for the first zero-crossing of df(tT )/dt. Varying T over the unit
circle, one obtains a closed neighborhood Q of 0 that is a subset of S.
This analytic estimate provides a guarantee for the range of translations
tT over which p(X) can be exactly aligned with p(X − tT ).

2.3. Variation of SIDEN with Smoothing

In this section, we examine how smoothing the reference pattern pwith
a low-pass filter influences its SIDEN. We assume a Gaussian kernel
for the filter. As the reference pattern is sparsely represented in a para-
metric form in a Gaussian dictionary, its convolution with a Gaussian
filtering function is also sparsely representable in the same dictionary.
Therefore, the choice of the Gaussian kernel provides an immediate
interpretation of our SIDEN estimation results for smoothed versions
of the reference pattern. We assume that p is filtered with a Gaus-
sian kernel of the form 1

πρ2
φρ(X) with unit L1-norm. The function

φρ(X) = φ(Λ−1(X)) is an isotropic Gaussian atom with the diagonal
scale matrix Λ having ρ on the diagonal entries. The scale parameter ρ
controls the size of the Gaussian kernel. The smoothed version of the
reference pattern p(X) is given by

p̂(X) =
1

πρ2
φρ(X) ∗ p(X) =

KX
k=1

λk
1

πρ2
φρ(X) ∗ φγk (X) (6)

by linearity of the convolution operator. As shown in [10], the filtered
pattern is obtained as p̂(X) =

PK
k=1 λ̂kφγ̂k (X), where the smoothed

atom φγ̂k (X) has parameters

τ̂k = τk, Ψ̂k = Ψk, σ̂k =
q

Λ2 + σ2
k, λ̂k =

|σk|
|σ̂k|

λk. (7)

Therefore, the change in the pattern parameters due to the filtering
can be captured by substituting the scale parameters σk of atoms with
σ̂k and replacing the coefficients λk with λ̂k. Now, considering the
same setting as in Section 2.1, where the target pattern p(X − tT )
is exactly a translated version of the reference pattern p(X), we
examine how the volume of the SIDEN changes when the reference
and target patterns are low-pass filtered as it is typically done in
multiscale image registration algorithms. Hence, we analyze the
variation of the smoothed SIDEN estimate Q̂ corresponding to the
distance f̂(tT ) between p̂(X) and p̂(X − tT ) with respect to the filter
size ρ. Since the smoothed pattern has the same parametric form as
the original pattern, the variation of Q̂ with ρ can be analyzed easily
by examining how the parameters involved in the derivation of the
SIDEN, e.g., âjk, b̂jk, λ̂k, σ̂k, depend on ρ. We use the notation (̂.)
for referring to the parameters corresponding to the filtered versions of
the Gaussian atoms. We now give our main result, which summarizes
the dependence of the smoothed SIDEN estimate on the filter size ρ.

Theorem 2. Let V (Q̂) denote the volume (area) of the SIDEN
estimate Q̂ for the smoothed pattern p̂. Then, the order of dependence
of the volume of Q̂ on ρ is given by V (Q̂) = O(1 + ρ2).

Theorem 2 is proved in [10, Appendix A.2]. The proof is based on
the examination of the order of variation of âjk, b̂jk, ĉjk, Q̂jk with ρ,
which is then used to derive the dependence of δ̂T on ρ. The theorem
shows that the neighborhood of translation vectors inside which the
reference pattern p̂(X) can be perfectly aligned with p̂(X − tT ) using
a descent method expands at the rate O(1 + ρ2) with respect to the
increase in the filter size ρ. Here, the order of variation O(1 + ρ2) is
obtained for the estimate Q̂ of the SIDEN. Since Q̂ ⊂ Ŝ for all ρ, one

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Kernel size (ρ)

 

 
ωT
δT

Fig. 2. The variations of the true distance ω̂T of the boundary of Ŝ to
the origin and its estimation δ̂T with respect to the filter size

immediate observation is that the rate of expansion of the SIDEN Ŝ
must be at least of O(1 +ρ2); i.e., V (Ŝ) ≥ V (Q̂) = O(1 +ρ2). Note
that the dependence of V (Ŝ) on ρmay get above this rate for particular
reference patterns. For instance, for patterns that consist only of atoms
with coefficients of the same sign, there exists a threshold value ρ0 of
the filter size such that for all ρ > ρ0, Ŝ = R2 and thus V (Ŝ) = ∞
[10, Proposition 4 ].

2.4. Evaluation of SIDEN by experiments

We now evaluate our theoretical results about SIDEN estimation with
an experiment that compares the estimated SIDEN to the true SIDEN.
We generate a reference pattern consisting of 40 randomly selected
Gaussian atoms with random coefficients, and choose a random unit
direction T . Then, we determine the distance2 ω̂T of the true SIDEN
boundary from the origin along T , and compare it to its estimation δ̂T
for a range of filter sizes ρ. The distance ω̂T is computed by searching
the first zero-crossing of df̂(tT )/dt numerically, while its estimate δ̂T
is computed according to Theorem 1. We repeat the experiment 300
times with different random reference patterns p and directions T ; and
average the results. In 44% of the trials, df̂(tT )/dt has been exper-
imentally seen to have no zero-crossings when the pattern is filtered
sufficiently. The distance ω̂T and its estimation δ̂T are plotted in Fig-
ure 2 for the remaining 56% of the patterns. The figure shows that both
ω̂T and δ̂T have an approximately linear dependence on ρ. This is an
expected behavior, since δ̂T = O

“
(1 + ρ2)1/2

”
≈ O(ρ) for large ρ.

The estimate δ̂T is smaller than ω̂T since it is a lower bound for ω̂T . Its
variation with ρ is seen to capture well the variation of the true SIDEN
boundary ω̂T .

3. APPLICATION TO PARAMETER DOMAIN SAMPLING

We now demonstrate the usage of our SIDEN estimate in the construc-
tion of a grid in the translation parameter domain that is used for image
registration. We have shown that small translations, i.e., vectors in Q,
can be perfectly recovered by minimizing the distance function with
descent methods. However, the perfect alignment guarantee is lost for
relatively large translations that are outside Q. Hence, we propose to
construct a grid in the translation parameter domain and estimate large
translation vectors with the help of the grid. In particular, we describe a
grid design procedure such that any translation vector tT lies inside the
SIDEN of at least one grid point. Such a grid guarantees the recovery
of the translation parameters if the distance function is minimized with

2With an abuse of notation, the parameter denoted as ω̂T in Section 2.4
corresponds in fact to sup ω̂T in the definition of SIDEN in (5).
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a gradient descent method that is initialized with the grid points. In
order to have a perfect recovery guarantee, each one of the grid points
must be tested. However, as this is computationally costly, we pro-
pose to use the following two-stage optimization instead, which offers
a good compromise with respect to the accuracy-complexity tradeoff.
First, we search for the grid vector that gives the smallest distance be-
tween the image pair, which results in a coarse alignment. Then, we
refine the alignment with a gradient descent method initialized with
this grid vector.

We now explain the grid construction. From Theorem 1, one can
verify that the estimation δT of the SIDEN boundary along the direc-
tion T is symmetric and it satisfies δT = δ−T . Therefore, one can
easily determine a grid unit in the form of a parallelogram that lies
completely insideQ and tile the (tTx, tTy)-plane with these grid units.
This defines a regular grid in the (tTx, tTy)-plane such that each point
of the plane lies inside the SIDEN of at least one grid point. As the
SIDEN increases with the filter size, the area of the grid units expand
at the rateO(1 +ρ2) and the number of grid points decrease at the rate
O
`
(1 + ρ2)−1

´
with ρ.

The construction of a regular grid in this manner is demonstrated for
a digit pattern. In Figure 3(a), the reference pattern and its translated
versions corresponding to the neighboring grid points in the first and
second directions of sampling are shown. In Figure 3(b), the reference
pattern is shown when smoothed with a filter of size ρ = 0.15, as well
as the neighboring patterns in the smoothed grid. The corresponding
grids are displayed in Figures 3(c) and 3(d), where the SIDEN esti-
mates Q, Q̂ and the grid units are also plotted. One can observe that
smoothing the pattern results in a coarser grid. In Figure 4, we plot
the variation of the number of grid points with the filter size for the
random patterns of the previous experiment and the digit pattern. The
results confirm that the number of grid points decreases monotonically
with the filter size, as stated by Theorem 2, which suggests that the
number of grid points must be of O

`
(1 + ρ2)−1

´
. Finally, the experi-

ments in [10] show that this registration method indeed has an optimal
alignment performance.

4. CONCLUSION

We have presented an analysis of hierarchical image registration
with descent-type local minimizers. We have examined the prob-
lem of aligning a reference and a target pattern that differ by a two-
dimensional translation. We have derived an estimation of the neigh-
borhood of translations for which the image pair can be exactly aligned
with a local optimizer. Then we have investigated how the area of this
neighborhood varies with the size of the filter used in the coarse-to-fine
registration process. Our finding is that the area of this neighborhood
increases quadratically with the filter size, therefore, smoothing the
patterns improves the well-behavedness of the distance function. We
have used our results in the construction of a multiscale regular grid in
the translation parameter domain that guarantees the exact alignment
of a reference pattern with its translated versions. The fact that the
number of grid points is inversely proportional to the square of the fil-
ter size shows that filtering is useful for decreasing the computational
complexity of image alignment.
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