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Abstract—We propose a new technique which allows us
to estimate any random signal from a large set of noisy
observed data on the basis of samples of only a few
reference signals.

I. INTRODUCTION

A. Motivation

In many applications associated with difficult environ-
ments, a priori information on signals of interest can
be obtained only at a few given times {t

j

}p

1 Ω T =

[a, b] Ω R where a = t1 < t2 < · · · < t
p°1 < t

p

= b
whereas it is required to estimate the signals at any
time t 2 T . Typical examples are devices deployed
in the stratosphere, underground or underwater. The
choice of points t

j

might be beyond our control (e.g. in
geophysics and defence tascs). For any t 2 T , the signal
is a stochastic vector. We consider large sets of such
signals where each signal is associated with a particular
t 2 T . The observations are noisy and also large. Thus,
all we can exploit is noisy observations and a sparse
information on reference signals given by samples of
the signal set at times {t

j

}p

1.

B. Formalization of the problem

To formalize the problem, we denote by ≠ the set of all
experimental outcomes1, by K

x

= {x
!

| ! 2 ≠} a set of
reference stochastic signals and by K

y

= {y
!

| ! 2 ≠}
a set of observed signals2. Note that, theoretically, K

x

and K
y

are infinite signal sets. In practice, however, sets
K

x

and K
y

are finite and large, each with, say, N signals.
To each random outcome ! 2 ≠ we associate a unique

1We write {≠, ß, µ} for a probability space where ß Ω ≠ is a
sigma-algebra of measurable sets known as the event space and µ is
a non-negative probability measure with µ(≠) = 1.
2In an intuitive way, y can be regarded as a noise-corrupted version

of x. For example, y can be interpreted as y = x + n where n is
white noise. We do not restrict ourselves to this simplest version of y
and assume that the dependence of y on x and n is arbitrary.

signal pair (x

!

,y
!

) where x

!

: T ! C0,1
(T, Rm

) and
y

!

: T ! C0,1
(T, Rn

)

3. Write

P = K
x

£K
y

= {(x
!

,y
!

) | ! 2 ≠} (1)

for the set of all such signal pairs. For each ! 2 ≠,
the components x

!

= x

!

(t), y
!

= y

!

(t) are Lipschitz
continuous vector-valued functions on T [1].

We wish to construct an estimator F (p°1) that estimates
each reference signal x

!

(t) in P from related observed
input y

!

(t) under the restriction that a priori information
on only a few reference signals, x

!

(t1), . . ., x

!

(t
p

), is
available where pø N .

In more detail, this restriction implies the following.
Let us denote by K(p)

x

a set of p signals x

!

(t1), . . .,
x

!

(t
p

) for which a priori information is available. A
set of associated observed signals y

!

(t1), . . ., y
!

(t
p

) is
denoted by K(p)

y

. Then for all y

!

(t) that do not belong
to K(p)

y

, y

!

(t) /2 K(p)
y

, estimator F (p°1) is said to be
the blind estimator [2], [3], [4], [5] since no information
on x

!

(t) /2 K(p)
x

is available. If y

!

(t) 2 K(p)
y

then
F (p°1) becomes a nonblind estimator since information
on x

!

(t) 2 K(p)
x

is available. Thus, depending on y

!

(t),
estimator F (p°1) is classified differently. Therefore, such
a procedure of estimating reference signals in K

x

is here
called the almost blind estimation.

C. Differences from known techniques

We would like to note that the almost blind estimation
is different from known methods such as nonblind [6]–
[18], semiblind and blind techniques [2]–[5], [19]–[22]4.
Indeed, at each particular time t 2 T , the input of the
almost blind estimator F (p°1) developed below in this
paper, is a random vector y

!

(t). Thus, for different t 2
T , the input is a different random vector y

!

(t) but we

3The space C0,1(T, Rp) is the set of vector-valued Hölder contin-
uous functions f of order 1 with f(t) 2 Rp and kf(s) ° f(t)k ∑
K|s° t|. See [1], p. 96.
4The literature on these subjects is very abundant. Here, we listed

only some related references.
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wish to keep the same estimator F (p°1) for any t 2 T ,
i.e. for any observed signal y

!

(t) in the set K
y

.

By known techniques in [2]–[16] and [19]–[22], an
estimator (here, we choose the united term ‘estimator’ to
denote an equalizer or a system) is specifically designed
for each particular input–output pair represented by
random vectors. That is, for different inputs (observed
signals) y

!

(t), known techniques require different spec-
ified estimators and the number of estimators should be
equal to a number of processed signals. In the case of
large signal sets, such approaches become inconvenient
because the number of signals N can be very large as
it is supposed in this paper. For example, in problems
related to DNA analysis, N = O(10

4
). Therefore, the

inconvenient (burdened, difficult) restriction of using a
priori information on only p reference signals, with
p ø N , is quite significant. At the same time, beside
difficulties that this restriction imposes on the estimation
procedure, we use it in a way that allows us to avoid
the hard work associated with known techniques applied
to large signal sets. To the best of our knowledge,
the exception is the methodology in [17], [18] where
for estimation of a set of signals, the single estimator
is constructed. The estimation techniques in [17], [18]
exploit information in the form of a vector obtained, in
particular, from averaging over signals in K(p)

x

.

Further, the semiblind techniques are not applicable to
the considered problem because they require a knowl-
edge of some ‘parts’ of each reference signal in K

x

(e.g.,
see [3], [5], [19]) but it is not the case here. Although the
blind techniques allow us to avoid this restriction, it is
known that they have difficulties related to accuracy and
computational load. In the problem under consideration,
the advantage is a knowledge of some (small) part of the
set of reference signals. It is natural to use this advantage
in the estimator structure and we will do it in Section II.

Nonblind estimators [6]–[16] are not applicable here be-
cause they require a priori information on each reference
signal in K

x

(e.g., a knowledge of covariance matrix
E[x

!

y

T

!

] where E is the expectation operator). In par-
ticular, it is known that there are significant advantages
in adaptive or recursive estimators (e.g., associated with
Kalman filtering approach) and it may well be possible
to embed our estimator into such an environment—
but that is not our particular concern here. Further, we
note that much of the literature on piecewise linear
estimators [23]–[26] seems to be not directly relevant
to the estimator proposed here. In the first instance
papers such as [23]–[26] are mostly concerned with
the theoretical problems of approximation by piecewise
linear functions on multi-dimensional domains which is

not the case here.

Also, unlike many known techniques, we consider the
case of observations corrupted by an arbitrary noise (not
by an additive noise only) and design the estimator in
terms of the Moore-Penrose pseudo-inverse matrix [27].
Therefore it is always well defined.

II. THE MAIN RESULTS

In this section we outline the rationale for the proposed
estimator and state the main results.

A. Some preliminaries

The proposed estimator F (p°1) is adaptive to a sparse
set K(p)

x

.

The conceptual device behind the proposed estimator is
a linear interpolation of an optimal incremental estima-
tion applied to random signal pairs (x

!

(t
j

), y
!

(t
j

)) and
(x

!

(t
j+1), y

!

(t
j+1)), for j = 1, . . . , p ° 1, interpreted

an extension of the least squares linear (LSL) estimator
(see, for example, [6], [11], [16]).
Although this idea may seem reasonable the detailed
justification of the new estimator is not straightforward
and requires careful analysis. We shall do this by es-
tablishing an upper bound for the associated error and
by showing that this upper bound is directly related
to the expected error for an incremental application of
the optimal LSL estimator. In Section II-B below, we
will show that such an estimator is possible under quite
unrestrictive assumptions.

Since the estimator proposed below is based on an
extension of the LSL estimator it is convenient to sketch
known related results here. Consider a single random
signal pair (x(!), y(!)) where x 2 L2

(≠, Rm

) and
y 2 L2

(≠, Rn

) with zero mean (E[x], E[y]) = (0,0),
where 0 is the zero vector. Note that here, x and y do not
depend on t as above. The estimate b

x of the reference
vector x by the optimal least squares linear estimator is
given by

b
x(!) = E

xy

E†
yy

y(!) (2)

where E
xy

= E[xy

T

] and E
yy

= E[yy

T

] are known
covariance matrices and E†

yy

is the Moore-Penrose
pseudo-inverse of E

yy

. By the LSL estimator, matrices
E

xy

and E†
yy

should be specified for each signal pair
(x(!),y(!)).

Further, for a justification of our estimator, we need
some more notation as follows. It is convenient to
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denote x(t,!) = x

!

(t) and y(t, !) = y

!

(t) so that
x(t,!) 2 Rm and y(t,!) 2 Rn.

B. The piecewise LSL interpolation estimator

For each signal pair (or vector function pair)
in the set P , (x(t,!), y(t,!)), we assume that
(E[x(t, ·)], E[y(t, ·)]) = (0,0). To begin the estimation
process we need to find an initial estimate b

x(t1, !). It
is assumed this can be found by some known method.
Further, let us consider a signal estimation procedure
at t2, · · · , tp. We use an inductive argument to define
an incremental estimation procedure. Consider a typical
interval [t

j

, t
j+1] and define incremental random vectors

v

j

(!) = x(t
j+1,!)° x(t

j

,!) 2 Rm, (3)
w

j

(!) = y(t
j+1,!)° y(t

j

, !) 2 Rn (4)

and construct the optimal linear estimate

b
v

j

(!) = E
vjwj E

†
wjwj

w

j

(!) (5)

of the increment v

j

(!) for each j = 1, . . . , p ° 1. We
will write

B
j

= E
vjwj E

†
wjwj

2 Rm£n. (6)

Define the estimate at point t
j+1 by setting b

x(t
j+1,!) =

b
x(t

j

,!) +

b
v

j

(!). Thus we have

b
x(t

j+1,!) =

b
x(t

j

,!) + B
j

[y(t
j+1,!)° y(t

j

,!)]

= ≤

j

(!) + B
j

y(t
j+1,!) (7)

where we write

≤

j

(!) =

b
x(t

j

,!)°B
j

y(t
j

,!). (8)

Note that this definition can be rewritten more sugges-
tively as

b
x(t

j

,!) = ≤

j

(!) + B
j

y(t
j

,!) (9)

for each j = 1, . . . , p° 1.

The formula (7) shows that on each subinterval [t
j

, t
j+1]

the estimate of the reference signal at t
j+1 is obtained

from the initial estimate at t
j

by adding the optimal LSL
estimate of the increment.

Now, consider a signal estimation at any t 2 [a, b]. The
first step is simply to extend the formulæ (7) and (9) to
all t 2 [t

j

, t
j+1] by defining

b
x(t,!) = ≤

j

(!) + B
j

y(t,!). (10)

Thus the incremental estimation across each subinterval
is extended to every point within the subinterval. Be-
cause of determining estimate b

x(t
j+1,!) in the form

(5)–(7) we interpret this procedure as the LSL piecewise
interpolation.

The incremental estimations are collected together in the
following way. For each j = 1, 2, . . . , p° 1, write

F
j

[y(t,!)] = ≤

j

(!) + B
j

y(t,!) (11)

for all t 2 [t
j

, t
j+1] and hence define the piecewise LSL

interpolation estimator by setting

F (p°1)
[y(t, !)] =

p°1X

j=1

F
j

[y(t,!)][u(t°t
j

)°u(t°t
j+1)]

(12)
for all t 2 [a, b] where u(t) =

Ω
1 for t > 0

0 otherwise. is the
unit step function. Thus we can now use the estimate

b
x(t,!) = F (p°1)

[y(t,!)] (13)

for all (t,!) 2 T £ ≠. The idea of a piecewise LSL
interpolation estimator on T seems intuitively reasonable
for signals with a well defined gradient over T .

We note that by (6)-(13), the estimator F (p°1) is adaptive
to a variation of signals in K(p)

x

. A change of signals
in K(p)

x

implies a change of determinations of sub-
estimators B

j

in (6) and keep the same structure of the
F (p°1).

C. Justification of the LSL interpolation estimator

We wish to justify the proposed estimator by establishing
an upper bound for the associated error.

To explain the technical details we introduce some
further terminology.

Let us denote kx(t, ·)k2≠ =

R
≠ kx(t,!)k2dµ(!). As-

sume that for all t 2 T , we have

kx(t, ·)k2≠ <1 and ky(t, ·)k2≠ <1, (14)

where kx(t,!)k and ky(t,!)k are the Euclidean norms
for x(t,!) and y(t,!) for each (t,!) 2 T £ ≠,
respectively. Thus we will say that the signals are
square integrable in ! and write x(t, ·) 2 L2

(≠) and
y(t, ·) 2 L2

(≠) for each fixed t 2 T .

For each t 2 T , let F = {f : T £ ≠ ! Rm | f(t, ·) 2
L2

(≠, Rm

)} and define

kfk
T,≠ =

1

b° a

Z

T£≠
kf(t,!)k dt dµ(!)

=

1

b° a

Z

T

E[kf(t, ·)k] dt

for each f 2 F where kf(t,!)k is the Euclidean norm
of f(t, !) on Rm for all (t, !) 2 Rm. Suppose that for
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all (x, y) 2 P there exist constants ∞
j

, ±
j

> 0 such that

kx(s,!)° x(t,!)k ∑ ∞
j

|s° t|, (15)
ky(s,!)° y(t,!)k ∑ ±

j

|s° t| (16)

for all (s,!), (t,!) 2 [t
j

, t
j+1]£≠, i.e. we suppose that

the Lipschitz constants in (15) are independent of !.

The error bound for the piecewise LSL interpolation
estimator is established in Theorem 1 below.

Theorem 1: If condition (15) is satisfied then the error
≤
p

= kx° F (p°1)
[y]k

T,≠ associated with the piecewise
LSL interpolation estimator satisfies the inequality

≤
p

∑ max

j=1,...,p°1
{(∞

j

+ kB
j

k2±j

)|t
j+1 ° t

j

| (17)

+

h
kE1/2

vj ,vj
k2

F

° kE
vjwj (E

1/2
wjwj

)

†k2
F

i1/2
} (18)

where kB
j

k2 denotes the 2-norm given by the square
root of the largest eigenvalue of BT

j

B
j

and k ·k denotes
the Frobenius norm.

III. CONCLUSION

The piecewise least squares linear (LSL) interpolation
estimator was developed to estimate a large set of
random signals of interest from the set of observed data.
The distinctive feature is that a priori information can
be obtained on only a few reference signals in the form
of samples. Since no information of the major part of
the set of reference signals is known, such a procedure
is called almost blind estimation.

The proposed estimator mitigates to some extent the dif-
ficulties associated with existing estimation approaches
such as the necessity to know information (in the form of
a sample, for instance) on each random reference signal;
invertibility of the matrices used to define the estimators;
and demanding computational work.
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