
Hierarchical Tucker Tensor Optimization -
Applications to Tensor Completion

Curt Da Silva
Seismic Laboratory for Imaging and Modeling

& Department of Mathematics
University of British Columbia

Email: curtd@math.ubc.ca

Felix J. Herrmann
Seismic Laboratory for Imaging and Modeling

& Department of Earth and Ocean Sciences
University of British Columbia

Vancouver, BC, Canada
Email: fherrmann@eos.ubc.ca

Abstract—In this work, we develop an optimization framework
for problems whose solutions are well-approximated by Hierar-
chical Tucker (HT) tensors, an efficient structured tensor format
based on recursive subspace factorizations. Using the differential
geometric tools presented here, we construct standard optimiza-
tion algorithms such as Steepest Descent and Conjugate Gradient
for interpolating tensors in HT format. We also empirically
examine the importance of one’s choice of data organization in
the success of tensor recovery by drawing upon insights from the
matrix completion literature. Using these algorithms, we recover
various seismic data sets with randomly missing sources.

I. INTRODUCTION
Matrix completion has seen a large amount of development

in recent years, resulting in algorithms that are very space
and time efficient and theoretical guarantees which closely
agree with empirical recovery rates. The success of completing
a matrix with randomly missing entries via rank-minimizing
optimization is a result of assuming a low-rank model on the
underlying solution, coupled with a subsampling operator that
tends to increase the rank of the underlying matrix.

We use extended notions of low-rank in the case of in-
terpolating a tensor with missing entries. Our model is a
structured tensor format known as the Hierarchical Tucker
(HT) format, which efficiently represents a high-dimensional
tensor by means of a Kronecker splitting of subspaces, with
the set of all such tensors parametrizing a smooth manifold
in Rn1×n2×...nd . We extend the largely theoretical results
of [1] by imposing a Riemannian metric on the resulting
quotient manifold, from which we can derive the Riemannian
gradient and develop solvers for minimizing smooth functions
defined on this manifold. We will use these efficient, SVD-
free solvers in order to interpolate tensors that have a large
portion of their entries removed and empirically examine the
effect of data organization on the success of recovery for our
test seismic cases. Our manifold-optimization approach for
completing tensors with missing entries follows a similar spirit
to [2]. We present the results of several interpolated seismic
frequency slices and demonstrate our ability to recover tensors
even amidst high levels of subsampling.

II. HIERARCHICAL TUCKER TENSOR FORMAT

An important choice of dimension separation, ensuring that
the resulting HT tensor is low-rank, is that of a dimension tree.

Definition 1. A dimension tree for a d−dimensional tensor is
a nontrivial binary tree such that
• The root node, troot, has the label {1, . . . , d}
• The labels for the children of each non-leaf node form a

partition of the parent’s label, i.e.

tl t tr = t, t 6∈ L

where tl, tr are the left and right children of the node t,
respectively, and L is the set of all leaves of T .

Suppose that we have chosen a set of (positive integer) hi-
erarchical ranks (kt)t∈T assigned to each node of a dimension
tree T , with ktroot = 1. Then we have the following

Definition 2. Let Rn×p∗ and Rp×q×r∗ denote the set of all n×p
matrices of full rank and p×q×r 3-tensors of full multilinear
rank, respectively.

A d−tensor X is said to be in Hierarchical Tucker for-
mat with associated dimension tree T and hierarchical ranks
(kt)t∈T if there exist parameter matrices/tensors x = (Ut, Bt)
with Ut ∈ Rnt×kt∗ , Bt ∈ Rkr×kl×kt∗ such that φ(x) = X ,
where

vecφ(x) = (Utl ⊗ Utr )(B(kl,kr)) t = troot (1)

Ut = (Utl ⊗ Utr )(B(kl,kr)) t 6∈ L ∪ troot

where kt is the rank associated to node t and kl, kr are the
ranks associated to nodes tl, tr, respectively. We say that the
parameter matrices x are in Orthogonal Hierarchical Tucker
(OHT) format if (Ut, Bt) also satisfy

UTt Ut = Ikt for t ∈ L
(B

(kl,kr)
t )TB

(kl,kr)
t = Ikt for t 6∈ L ∪ troot

Let HT,k denote the set of all tensors expressible in HT
format with dimension tree T and hierarchical ranks (kt)t∈T .

Note that the intermediate matrices Ut in (1) for t 6∈ L do
not need to be stored: only the matrices Ut for t ∈ L and
so-called transfer tensors Bt for t 6∈ L need to be stored to
specify the tensor X completely. Let

M =×
t∈L

Rnt×kt∗ × ×
t∈T\L

Rktr×ktl×kt∗
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be the space of admissible HT parameters. φ given in (1) is
a smooth function from M to its image HT,k ⊂ Rn1×...nd

that is not injective. From the optimization point of view, any
optimization problem defined on HT,k and parametrized by
M and (1) will have minimizers which are not isolated. We
will characterize this non-uniqueness, and its remedy, below.

III. QUOTIENT GEOMETRY OF THE HT FORMAT

There is an ambiguity in the representative parameters for a
given HT tensor X , which is characterized in [1] as follows.
Let G be the Lie group

G = {A = (At)t∈T : At ∈ GL(kt) Atroot = 1}

acting on M via the right action

θA(Ut, Bt) := (UtAt, (A
−1
tr , A

−1
tl
, ATt ) ◦Bt)

where (A1, A2, A3)◦C is the multilinear product that premul-
tiplies C by Ai in the i-th dimension. Note that φ(x) = φ(y)
if and only if there exists a unique A ∈ G such that
y = θA(x). The quotient manifold has a unique smooth
structure such that π :M→M /G is a smooth submersion.
The quotient manifoldM /G is really our manifold of interest
for the purposes of solving optimization problems, since each
equivalence class π(x) is identified with unique values of φ(x).

The authors in [1] introduce the following horizontal space

HxM := (2){
(Uht , B

h
t ) :

(Uht )
TUt = 0kt×kt for t ∈ L

(Bht )
(kt)Qt(B

(kt)
t )T = 0kt×kt for t 6∈ L ∪ troot

}
where Qt = (UTtlUtl⊗U

T
trUtr ), which is shown to be invariant

under the action of θ. Eq. (2) allows us to uniquely identify
vector fields on M /G with horizontal vector fields in M.

For the purposes of interpolation, we are interested in the
computing the best fit of our data within the space of HT
models, which involves solving a corresponding optimization
program on HT,k. There is a large body of existing research
on solving optimization problems on matrix manifolds (see [3]
for a comprehensive introduction). Before we can develop such
optimization methods, we must first specify a well-defined
Riemannian metric on the quotient manifold M /G.

Fix x = (Ut, Bt), ηx = (δUt, δBt), ζx = (δVt, δCt) ∈
HxM. Let Pt = UTt Ut for each t ∈ T \ troot, Qt as above,
and let, by abuse of notation, δBt := δB

(kl,kr)
t and similarly

for δCt. One can show that, for the following inner product,

gx(ηx, ζx) :=
∑
t∈T

tr(P−1t δUTt δVt) (3)

+
∑

t 6∈L∪troot

tr(P−1t (δBt)
TQtδCt)

+ vec(δBtroot)
TQtroot vec(δCtroot)

it holds that gx(ηx, ζx) = gθA(x)(ηθA(x), ζθA(x)) for every
A ∈ G. Therefore the metric g restricted to vectors in the
horizontal space does not depend on the representative point
for the equivalence class, x′ ∈ π(x). Since each UTt Ut is

Require: x = (Ut, Bt), Z ∈ Rn1×...nd

δUtroot ← Z
for each t ∈ T \ L, visiting each node before its children
do
δUtl ←

∂Ut
∂Utl

∗
δUt, δUtr ←

∂Ut
∂Utr

∗
δUt,

δBt ←
∂Ut
∂Bt

∗
δUt

end for
return Dφ(x)∗Z = PHxM((δUt)t∈L, (δBt)t∈T\L)

Fig. 1. Algorithm for computing Dφ(x)∗Z

symmetric positive definite for each t ∈ T \ troot and varies
smoothly with x, it is easy to see that gx varies smoothly
with x as well. This yields a Riemannian metric that is well-
defined on the quotient manifold M /G (see 3.6.2 in [3]).
Our optimization algorithm will then be implemented on the
total space M rather than the abstract quotient M /G, with
the understanding that points x ∈ M will represent their
equivalence class π(x) ∈M /G (see [3] for more details).

When we restrict our parameter matrices to be in OHT, one
can see that since UTt Ut = Ikt for every t ∈ T \ troot, and so
the inner product (3) reduces to the standard Euclidean one.
For this reason, and to ensure that the resulting projections
on to HxM can be performed efficiently, we restrict our
parameters x = (Ut, Bt) to be OHT in the sequel. This is
not a hindrance from a theoretical point of view, because
any non-orthogonalized parameter set x can be efficiently
orthogonalized via Proposition 3 to a parameter set x′ such
that φ(x) = φ(x′). It can be shown that the resulting quotient
space of orthogonalized parameters is diffeomorphic to HT,k.

A. Riemannian Gradient

Using this Riemannian metric, we can compute the Rieman-
nian gradient of a smooth function f : HT,k → R as follows.
Let x ∈ M. Then by the fundamental theorem of linear
algebra, since im Dφ(x) = Tφ(x)H, ker Dφ(x)∗ = T⊥φ(x)

Our Riemannian gradient in this case can be easily seen as
Z = Dφ(x)∗gradf(φ(x)), since for any ξ ∈ HxM,

〈Z, ξ〉 = 〈Dφ(x)∗gradf(φ(x)), ξ〉
= 〈PTφ(x)Hgradf(φ(x)), Dφ(x)[ξ]〉
= Df(φ(x)) ◦Dφ(x)[ξ]
= Df(φ(x))[ξ]

The adjoint of Dφ(x) can be computed using that, for t ∈ T ,

δUt =
∂Ut
∂Utl

δUtl +
∂Ut
∂Ur

δUtr +
∂Ut
∂Bt

δBt

and Dφ(x)[ξ] = vec(δUtroot). The adjoint of this recursion,
followed by a projection on to (2), gives us Figure 1.

Since Ut in (1) is linear in each variable, one can write out
the partial derivatives of Ut with respect to Utl , Utr and Bt
by considering the possible matricizations of Ut

U
(kr)
t = UrB

(kr)
t (Utl ⊗ Ikt)T

U
(kl)
t = UlB

(kl)
t (Utr ⊗ Ikt)T
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and using the matrix calculus product rule

∂(AB)

∂X
= (BT ⊗ IMA

)
∂A

∂X
+ (INB ⊗A)

∂B

∂X
to isolate for the corresponding differential. We will not go
into the full derivation here due to space constraints. The final
result is a very simple set of MATLAB commands, which uses
code from the SPOT framework [4] and from the hTucker
toolbox [5], that requires only matrix-matrix multiplications
and permutations of relatively small matrices, which can be
performed efficiently.

IV. OPTIMIZATION ALGORITHMS

LetM be the space of parameters for the OHT format with
the corresponding Lie group of orthogonal matrices G ≤ G
acting on M via θ. For the purpose of interpolation, we are
interested in solving

x∗ = argmin
x=(Ut,Bt)

f(x) = ‖Aφ(x)− b‖22 (4)

s.t. UTt Ut = Ikt , (B
(kl,kr)
t )TB

(kl,kr)
t = Ikt

where A is our subsampling operator and b is our subsampled
data. For a Steepest Descent-type method, we have a means
to compute the Riemannian gradient of f at a point x, which
we will denote gx. In order to move along −gx for some
step size t, we need a retraction on M, which is a first-order
approximation to the exponential mapping on M.

Proposition 3. Let x = (Ut, Bt) ∈ M, η = (δUt, δBt) ∈
TxM. Then the reorthogonalization mapping R, introduced
in [6], and defined by

Rx(η) =


qf(Ut + δUt) if t ∈ L

qf((Rtl ⊗Rtr )(Bt + δBt)) if t 6∈ troot ∪L

(Rtl ⊗Rtr )(Bt + δBt) if t = troot

where qf(X), Rt are the Q-factor from the QR factorization of
X and Rt is the R-factor from the QR factorization associated
to node t, is a retraction on TM.

Rx(η) can be computed very efficiently, in the sense that
one avoids operating on the full tensor space Rn1×n2×...nd

and instead one performs QR factorizations on relatively small
matrices. Since R is a retraction on the tangent bundle TM
and HxM in (2) is a θ-invariant horizontal distribution on
M, by 4.1.2 in [3] we have that the mapping R̃π(x)(ξπ(x)) =
π(Rx(ξx)) is a well-defined retraction on T (M/G).

Using this retraction, we formulate the steepest descent
algorithm using an Armijo line search in a straightforward
manner, presented in Figure 2. We can easily modify this
framework to implement other first-order methods such as CG,
which we will use for our numerical examples.

V. MULTIDIMENSIONAL SUBSAMPLING

As we use seismic data examples for our recovery, it should
be noted that 3D seismic data is five dimensional, with two
source coordinates (x, y), two receiver coordinates (x, y), and
time, from which we extract a single, 4D frequency slice by

Require: Initial guess x0 = (Ut, Bt), 0 < c < 1 sufficient
decrease parameter, 0 < θ < 1 step size decrease
for k = 0, 1, 2, . . . until convergence do

Xk ← φ(xk)
fk ← f(Xk)
gk ← ∇xf(φ(xk)) //Riemannian gradient of f at xk
α← 1 //Armijo line search
while f(φ(Rxk(−αgk)))− fk > −cα〈gk, gk〉 do
α← α · θ

end while
xk+1 ← Rxk(−αgk)

end for

Fig. 2. Steepest descent for optimizing a function f over the manifold HT,k
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Fig. 3. Singular values for the Left: (src x, src y) Matricization Right: (src
x, rec x) Matricization of a test data set. Blue: Without subsampling, Black:
With subsampling

taking the Fourier transform in time and fixing a frequency.
Owing to the symmetric nature of seismic data between
sources and receivers, we have essentially two choices of
underlying dimension tree, both depicted in Figure 3. Namely,
we can choose between placing the (src x, src y) dimensions
in the rows and (rec x, rec y) dimensions in the columns, or
placing the (src x, rec x) dimensions in the rows and (src y, rec
y) dimensions in the columns (each choice specifies the rest of
the dimension tree). In the case when we are, say, randomly
missing sources, the former organization of data has the effect
that subsampling will tend to remove rows of this matrix, and
hence the singular values will not increase and in fact are set
to zero at the low end (the worst-case scenario for the purposes
of rank-minimizing recovery, e.g. see [7]). On the other hand,
the latter organization of data results in a subsampling operator
that randomly removes blocks from the underlying matrix,
which is a much more favourable situation from a low-
rank recovery perspective, as we can see from the singular
values of the resulting matrix. The same situation holds for
matricizations in the singleton dimensions, adding further
degrees of regularity to the computed solution compared to
standard matrix completion. Our choice of dimension tree is
of great importance in the success of our recovery.

VI. NUMERICAL EXPERIMENTS

In the following examples, we apply our algorithms to
interpolate seismic frequency slices from two test sets. In the
first set, we use data generated from a simple single-reflector
model, while the second set has been provided to us by British
Gas (BG), generated from an unknown model. For our solver,
we implement nonlinear CG in this OHT framework, using

Proceedings of the 10th International Conference on Sampling Theory and Applications

386



Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(a) True Data
Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(b) Subsampled Data
Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(c) Recovered - SNR 16.1 dB
Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(d) Subsampled Data
Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(e) Recovered - SNR 15.4 dB

Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(f) True Data
Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(g) Subsampled Data
Source y

S
o
u
rc

e
 x

 

 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−1

0

1

x 10
−4

(h) Recovered - SNR 14.8 dB
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Fig. 4. Top: (Rec x, Rec y) = (5,45). (b), (c), (g), (h) are results for 25% source subsampling, (d), (e),(i), (j) are results for 75% source subsampling
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(b) Interpolated - SNR 12.5 dB
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Fig. 5. Interpolated BG Data for 75% missing sources. Top: Fixed, unknown
source image, Bottom: Fixed receiver image

the orthogonalization retraction in (3) and projection onto the
horizontal space (2) as a vector transport.

The simple data set has size D ∈ R50×50×50×50 and we
randomly remove source (x, y) pairs from the data set before
recovery. We run the resulting algorithm for 200 iterations
starting from a random initial guess, which produces the
results in Figure 4. Even amidst high levels of missing sources,
the HT construction is able to sufficiently regularize the
interpolation process to successfully recover each slice for
fixed receiver coordinates (known as a common receiver gather
in seismic circles).

The BG data set originally has 68 x 68 sources correspond-
ing to 401 x 401 receivers, from which we remove a subset of
the sources randomly and interpolate using our CG method.
We show a common source gather and a common receiver
gather for 75% missing sources in Figure 5. We summarize our
results in Figure 6 for interpolating this volume from varying

Missing Sources SNR - Known SNR - Interpolated
25% 15.4 dB 14.4 dB
50% 15.7 dB 14.1 dB
75% 17.4 dB 11.6 dB

Fig. 6. SNRs of the data volume restricted to known source locations and
interpolated source locations after recovery.

amounts of missing sources.

VII. CONCLUSION

In this work, we have extended the largely theoretical
results of [1] to a practical algorithmic framework for solving
optimization problems whose solutions lie on a Hierarchical
Tucker manifold of fixed dimension tree and hierarchical rank.
Our methods easily allow us to interpolate tensors exhibiting
this hierarchical low-rank structure from a subset of their
entries. There is a large open question as to how one can
formulate precise recovery results for this problem to the
sufficiently comprehensive level of the recovery results present
in the Compressive Sensing and Matrix Completion literature,
a question that we leave for future research.

The authors would like to thank the sponsors of the SIN-
BAD consortium for their continued support and particularly
BG for providing the test data set.
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