
The restricted isometry property
for random convolutions

Felix Krahmer
Institute for Numerical and Applied Mathematics

University of Göttingen
Lotzestraße 16-18

37085 Göttingen, Germany
Email: f.krahmer@math.uni-goettingen.de

Shahar Mendelson
Department of Mathematics

Technion
Haifa 32000, Israel

Email: shahar@tx.technion.ac.il

Holger Rauhut
RWTH Aachen University

Lehrstuhl C für Mathematik (Analysis)
Templergraben 55

52056 Aachen, Germany
Email: rauhut@mathc.rwth-aachen.de

Abstract—We present significantly improved estimates for
the restricted isometry constants of partial random circulant
matrices as they arise in the matrix formulation of subsampled
convolution with a random pulse. We show that the required
condition on the number m of rows in terms of the sparsity s
and the vector length n is m & s log2 s log2 n.

I. INTRODUCTION

The theory of compressed sensing is based on the obser-
vation that many natural signals are approximately sparse in
appropriate representation systems, that is, only few entries
are significant. The goal of the theory is to devise methods to
recover such a signal x from linear measurements

y = Φx.

For example, it has been shown [1] that under the assumption
of a small restricted isometry constant on the matrix Φ,
approximate recovery via `1-minimization

min
z
‖z‖1 subject to Φz = y,

(where ‖z‖p denotes the usual `p-norm) is guaranteed even in
the presence of noise.

Here, for a matrix Φ ∈ Rm×n and s < n, the restricted
isometry constant δs = δs(Φ) is defined as the smallest
number such that

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22 for all s-sparse x.

If a matrix has a small restricted isometry constant, we also
say that the matrix has the restricted isometry property (RIP).

A class of measurement models that is of particular rele-
vance for sensing applications is that of subsampled convolu-
tion with a random pulse. In such a model, the convolution of
a signal x ∈ Rn with a random vector ε ∈ Rn given by

x 7→ ε ∗ x, (ε ∗ x)k =

n∑
j=1

ε(k−j) mod n xj .

is followed by a restriction PΩ to a deterministic subset of
the coefficients Ω ⊂ {1, . . . , n} and normalization of the
columns. The resulting measurement map is linear; its matrix
representation Φ given by

Φx =
1√
m
ε ∗ x

is called a partial random circulant matrix. In this paper,
we will focus on the case that the random vector ε is a
Rademacher random vector, that is, its entries are independent
random variables with distribution P(εi = ±1) = 1/2. Note,
however, that the corresponding results in [2] consider more
general random vectors.

The problem of proving the RIP for subsampled convolu-
tions has first been considered in [3]; these results have later
been improved in [4]. In [5], a similar problem is considered.
Both the sampling sets and the generators, however, are
chosen at random. In contrast, our result below holds for
an arbitrary fixed sampling sets Ω ⊂ {1, . . . , n}, which is
important in applications since in many practical problems, it
is natural or desired to consider structured sampling sets such
as Ω = {L, 2L, 3L, . . . ,mL} for some L ∈ N; these sets are
clearly far from being random.

This paper is structured as follows. In Section II, we present
our main result and compare it to the previously best known
results. Section IV formulates the problem in terms of chaos
processes and presents bounds for such processes in terms of
complexity parameters, which are introduced before that in
Section III. These bounds are then used to prove the main
result in Section V.

II. MAIN RESULT

Theorem II.1. ([2]) Let Φ ∈ Rm×n be a draw of a partial
random circulant matrix generated by a Rademacher vector
ε. If

m ≥ cδ−2s (log2 s)(log2 n), (1)

then with probability at least 1−n−(logn)(log2 s), the restricted
isometry constant of Φ satisfies δs ≤ δ. The constant c > 0 is
universal.

This result improves the best previously known estimates
for a partial random circulant matrix [4], namely that m ≥
Cδ(s log n)3/2 is a sufficient condition for achieving δs ≤ δ
with high probability. In particular, Theorem II.1 removes the
exponent 3/2 of the sparsity s, which was already conjectured
in [4] to be an artefact of the proof.

Remark II.2. In certain application scenarios, the ambient
dimension n as well as the number of measurements m may
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be given, while one is interested on the sparsity level that still
guarantees recovery. To obtain such a bound, we estimate the
logarithmic factors in s by log(n), so we obtain the condition
s ≤ m

log4(n)
. Again, the dependence is linear up to logarithmic

factors, which cannot be guaranteed using previous bounds.

III. IMPORTANT CONCEPTS AND DEFINITIONS

In the proof, two types of complexity parameters of a set of
matrices A will play an important role. The first one, denoted
by dF (A) and d2→2(A), is the radius of A in the Frobenius
norm ‖A‖F =

√
tr(A∗A) and the operator norm ‖A‖2→2 =

sup‖x‖2≤1 ‖Ax‖2, respectively. That is, dF (A) = sup
A∈A

‖A‖F
and d2→2(A) = sup

A∈A
‖A‖2→2. The second one, Talagrand’s

functional γ2(A, ‖·‖2→2), is given by the following definition.

Definition III.1 ([6]). For a metric space (T, d), an admissible
sequence of T is a collection of subsets of T , {Ts : s ≥ 0},
such that for every s ≥ 1, |Ts| ≤ 22s

and |T0| = 1. Then the
γ2 functional is given by

γ2(T, d) = inf sup
t∈T

∞∑
s=0

2s/2d(t, Ts),

where the infimum is taken with respect to all admissible
sequences of T .

Recall that for a metric space (T, d) and u > 0, the covering
number N(T, d, u) is the minimal number of open balls of
radius u in (T, d) needed to cover T . The γ2-functionals can
be bounded in terms of such covering numbers by the well-
known Dudley integral (see, e.g., [6]). A formulation specific
to a set of matrices A endowed with the operator norm is

γ2(A, ‖ · ‖2→2)

≤ C
∫ d2→2(A)

0

√
logN(A, ‖ · ‖2→2, u)du (2)

for some absolute constant C.

IV. REFORMULATION AS A CHAOS PROCESS

Let Φ be a partial circulant matrix based on a Rademacher
vector, then

δs(Φ) = sup
x∈Sn−1

| suppx|≤s

∣∣‖Φx‖22 − 1
∣∣

= sup
x∈Sn−1

| supp x|≤s

∣∣∣∣∥∥ 1√
m
PΩx ∗ ε

∥∥2

2
− 1

∣∣∣∣
= sup

x∈Sn−1

| suppx|≤s

∣∣‖Vxε‖22 − E‖Vxε‖22
∣∣ ,

where Vx is defined through Vxy := 1√
m
PΩx ∗ y.

As it turns out, the expression ‖Vxε‖22 is a Rademacher
chaos process, that is, it is of the form 〈ε,Mε〉. This obser-
vation was already exploited in [4] to obtain their suboptimal

bounds. Our result, however, incorporates the additional ob-
servation that the matrix M in the above scenario is V x∗V x,
hence positive semidefinite.

In the following, we will provide a bound for suprema of
chaos processes under such structural assumptions. That is, we
study expressions of the form

sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ .

Here A is an arbitrary set of matrices, which is assumed to
be symmetric, i.e., A = −A.

Theorem IV.1 ([2]). Let A ⊂ Rm×n be a symmetric set of
matrices and let ε be a Rademacher vector of length n. Then

E sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣

≤ C1

(
dF (A)γ2(A, ‖ · ‖2→2) + γ2(A, ‖ · ‖2→2)2

)
=: C1E.

Furthermore, for t > 0,

P
(

sup
A∈A

∣∣‖Aε‖22 − E‖Aε‖22
∣∣ ≥ C2E + t

)
≤ 2 exp

(
−C3 min

{
t2

V 2
,
t

U

})
,

where U = d2
2→2(A) and

V = d2→2 (A)(γ2(A, ‖ · ‖2→2) + dF (A)).

The constants C1, C2, C3 > 0 are universal.

The proof of this theorem is based on decoupling and a
chaining argument, see [2].

V. PROOF OF THEOREM II.1

The proof will be mainly based on Theorem IV.1. Thus we
need to control the parameters d2→2(A), dF (A), as well as
γ2(A, ‖ · ‖2→2) for the set

A = {Vx : x ∈ Ds,N},

where
Ds,N = {x ∈ RN : | suppx| ≤ s}.

Since the matrices Vx consist of shifted copies of x in all
of their m nonzero rows, the `2-norm of each nonzero row is
m−1/2‖x‖2; thus ‖Vx‖F = ‖x‖2 ≤ 1 for all x ∈ Ds,N and

dF (A) = 1.

To bound d2→2(A), we will use a Fourier domain descrip-
tion of Φ. Let F by the unnormalized Fourier transform
with elements Fjk = e2πijk/n. As the Fourier transform
diagonalizes the convolution operator, for every 1 ≤ j ≤ n,
F (x ∗ y)j = (Fx)j · (Fy)j . Therefore,

Vxξ =
1√
m
PΩF

−1X̂Fξ,
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where X̂ = diag(Fx) is the diagonal matrix, whose diagonal
is the Fourier transform Fx. In short,

Vx =
1√
m
P̂ΩX̂F ,

where P̂Ω = PΩF
−1. Now observe that for every x ∈ Ds,N

with the associated diagonal matrix X̂ ,

‖Vx‖2→2 =
1√
m
‖P̂ΩX̂F ‖2→2

≤
√
n

m
‖PΩF

−1‖2→2‖X̂‖2→2

≤ 1√
m
‖X̂‖2→2

=
1√
m
‖Fx‖∞. (3)

Setting ‖x‖∞̂ := ‖Fx‖∞ we observe that

‖Fx‖∞ ≤ ‖x‖1 ≤
√
s‖x‖2 ≤

√
s

for every x ∈ Ds,N , and hence

d2→2(A) ≤
√
s/m.

Next, to estimate the γ2 functional, recall from (2) that

γ2(A, ‖ · ‖2→2)

≤
∫ d2→2(A)

0

log1/2N(A, ‖ · ‖2→2, u)du,

where C is an absolute constant. By (3),

‖Vx − Vy‖2→2 = ‖Vx−y‖2→2 ≤ m−1/2‖x− y‖∞̂,

and hence for every u > 0,

N(A, ‖ · ‖2→2, u) ≤ N(Ds,N ,m
−1/2‖ · ‖∞̂, u).

Such covering numbers and the corresponding Dudley integral
have been bounded before, e.g., in the context of proving
the restricted isometry property for partial random Fourier
matrices [7]. The resulting bound for the γ2-functional is

γ2(A, ‖ · ‖2→2) ≤ C
√

s

m
(log s)(log n),

where C is an absolute constant. This implies that

γ2(A, ‖ · ‖2→2) ≤ C

c
δ

for the given choice of m.
Now, by choosing the constant c in (1) appropriately, one

obtains
E ≤ δ

2C2
,

where E and C2 are chosen as in Theorem IV.1. Then Theorem
IV.1 yields

P(δs ≥ δ) ≤ P (δs ≥ C2E + δ/2) ≤ exp(−C3(m/s)δ2),

which, after possibly increasing the value of c enough to
compensate C3, exactly amounts to the probability bound
given in the theorem.
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Fig. 1. Empirical recovery rate from partial random circulant measurements
for n = 500, m = 100, and different sparsity levels

VI. NUMERICAL ILLUSTRATION

We illustrate our results by a numerical example, consider-
ing signals of length n = 500 and m = 100 measurements,
letting the sparsity vary. We used a partial random circulant
matrix based on a Bernoulli vector, where the rows are selected
at random. The plot shows the empirical success rate, that is,
in which fraction of the trials the correct signal was recovered
(see Figure 1). One should note that our rather simple tests
depict the non-uniform success rate: Given a signal, what
is the probability that it can be recovered from randomly
generated measurements? What we proved above are uniform
recovery guarantees: With high probability, a single randomly
chosen matrix allows for the recovery of all sparse vectors.
This property is much harder to check, as one needs to find
the worst vector. While we leave such tests in the context
of partial random circulant matrices for future work, we note
that strategies to check for this property have been investigated
recently in [8].

VII. CONCLUSION

In this paper we derive bounds on the embedding dimension
necessary for a partial random circulant matrix, which is linear
in the sparsity. This improves on previous results, in which the
sparsity appears with an exponent of 3

2 .
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