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Abstract—In this paper, we examine the joint signal sampling
and detection problem when noisy samples of a signal are
collected in the sequential fashion. In such a scheme, at the
each observation time point we wish to make a decision that the
observed data record represents a signal of the assumed target
form. Moreover, we are able simultaneously to recover a signal
when it departs from the target class. For such a joint signal
detection and recovery setup, we introduce a novel algorithm
relying on the smooth correction of linear sampling schemes.
Given a finite frame of noisy samples of the signal we design a
detector being able to test a departure from a target signal as
quickly as possible. Our detector is represented as a continuous
time normalized partial-sum stochastic process, for which we
obtain a functional central limit theorem under weak assumptions
on the correlation structure of the noise. The established limit
theorems allow us to design monitoring algorithms with the
desirable level of the probability of false alarm and able to detect
a change with probability approaching one.

Index Terms—joint sampling-detection, parametric signals,
nonparametric alternatives

I. INTRODUCTION

The problem of reconstructing an analog signal from its
discrete samples plays a critical role in the modern technology
of digital data transmission and storage. In fact, the theory
of signal sampling and recovery has attracted a great deal
of research activities lately, see [8], [9] and the references
cited therein. In particular, the problem of signal sampling and
recovery from imperfect data has been addressed in a number
of recent works [5], [1], [2], [6]. The efficiency of sampling
schemes depends strongly on the a priori knowledge of an
assumed class of signals. For a class of bandlimited signals the
signal sampling and recovery theory builds upon the celebrated
Whittaker-Shannon interpolation scheme. On the other hand,
there exists a class of nonbandlimited signals which can be
recovered using the frequency rate below the Nyquist thresh-
old. This is possible since this class is completely specified
by a finite dimensional parameter. This parametric class of
functions is often referred to as finite rate innovation signals
[4], [3]. In practice, when only random samples are available it
is difficult to verify whether a signal is bandlimited, parametric
or belongs to some general function space. This calls for a
joint nonparametric detection-reconstruction scheme to verify
a type of the signal and simultaneously able to recover it.
In fact, the problem of automatic rapid detection of signals
differing from a reference (target) signal is important in many
fields of signal processing and communication, e.g., in the
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analysis of radar signals and synchronization procedures the
joint detection and reconstruction provides the basis to de-
sign effective receivers. The additional difficulty of designing
detection/reconstruction procedures comes from the fact that
samples are inherently noisy and observed sequentially within
a fixed time frame. Hence, at the current frame we have a
noisy data set {y; : i < k}, and a detector should be applied
immediately when a new observation y 1 is available to the
system. Hence, suppose we are given noisy measurements

yr = f(kT) + e, ()

where 7 is the sampling period, {e;} is a zero mean noise
process, and f(e) is an unspecified signal which belongs to
some signal space. In this paper we are interested in the
following on-line detection problem. We are given a reference
(target) parametric class of signals S = {f(t;0) : 0 € O},
where © is a subset of a finite dimensional space, and wish
to test the null hypothesis Hy : f € S against an arbitrary
alternative H; : f ¢ S. Throughout the paper, we assume that
the signal f(¢) of interest is observed over a finite time frame,
ie., t € [0,T], for some 0 < T < oo. Indeed, in practice we
can only process a part of the signal which can be otherwise
defined over an arbitrary interval. As a result, we are interested
in methods relying on a finite data set {yy : k = 0,...,n}
obtained from model (1). Concerning the noise process in
(1), we admit a wide class of correlated error processes. Our
assumption is nonparametric and specifies a certain asymptotic
behavior of the noise process. Specifically we assume that
{er} satisfies the so-called invariance principle or functional
central limit theorem also often referred to as the Donsker’s
property, see [10] for further details. Hence, the condition on
the error process employed in this paper is as follows.

Assumption 1 Let {ey} be a weakly stationary stochastic
process with zero mean which satisfies a functional central
limit theorem, i.e.,

Lns]
n~1/2 Z € = /NB(s),
k=0

as n — oo, for some finite constant 1.

Here B(t) denotes a standard Brownian motion and =
stands for the convergence in distribution. Also |z] denotes
the greatest integer less or equal to z. It is worth mentioning
that the validity of the functional central limit theorem, i.e.,
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of Assumption 1 is not limited to the ¢.i.d. case but also
holds for many dependent stationary processes with summable
auto-covariances. For instance, it holds for linear processes
and mixing processes [10]. The dependence structure of the
measured data is controlled by the parameter 7 appearing
in Assumption 1. This parameter is identified with the limit
lim,, 00 Var(n=/23"7_, ex) and is often referred to as the
time-average (long-run) variance of {ej}.

Our test statistic builds upon the signal recovery methods
developed in [5], [6], where it has been proved that they
possess the consistency property, i.e., they are able to converge
to a large class of signals not necessarily being bandlimited.
A generic form of such estimates is given by

fnt) =7 yiKa(jr,1), @)

Jj=0

where Kq(u,t) is the reconstruction kernel parameterized by
the parameter €). For the consistency results the parameter 2
and the sampling period 7 should depend on the data size n
and be selected appropriately. In fact, we need that 2 — oo
and 7 — 0 as n — oo with the controlled rate. For example,
the choice @ = n'/? and 7 = n~! would be sufficient
to assure the consistency for a wide nonparametric class of
signals defined on the a finite interval. Our detection algorithm
uses the data observed over the interval [0, T'] and therefore we
select 7 = T'/n and fix 2 to some large number. The kernel
Ka(u,t) = sin(Q(t — u))/7(t — u) is particularly important
since it is the reproducing kernel for bandlimited signals with
the bandwidth 2. For a broader class of signals we can use
generalized kernels Ko (u,t) = >, o(Q(u — k)Y (Q(t — k)),
where ¢(t), ¥(t) can be specified as biorthogonal functions
[8].

II. RECONSTRUCTION AND DETECTION ALGORITHMS

Our detection technique is relying on the consistent recon-
struction method defined in (2). Our asymptotic results assume
n — oo but we will also provide useful approximations for
finite n. Note that n can be regarded as the planed maximum
number of observations in the time interval [0,7]. In this
paper we address the following question: how long do we have
to sample the signal, until the available data provide enough
evidence to reject the null hypothesis Hy : f € S ? A specific
example of the null hypothesis class S is a class of signals that
are a superposition of shifted versions of a known pulse h(t),
ie., f(t;0) = Zf:l aih(t —ty). Here 6 is a 2L dimensional
vector of unknown parameters.

Our goal in this paper is to decide whether the null hypothesis
is true or not, given a sequentially observed data set drawn
from the observation model (1), where f(t) is an unknown
signal from a large nonparametric function space. Hence,
if the alternative signal is unknown, we propose a detector
which can be computed without specifying this signal. We
will use a sequential version of the nonparametric estimator
(2), which automatically adapts to the unknown alternative
signal as sampling proceeds. Specifically, we use fn(t) as

a basic building block of our detection method, i.e., we
stop our detection process at the first time point t = kT
if a certain distance measure between fj, (t) and the target
parametric signal f(¢;6p) from S is is too large. Here 6
denotes the “true* parameter if the null hypothesis holds. Since
the parameter 6, is unknown we replace it in our test statistic
with its consistent estimate é see [7] for an extensive overview
of estimation algorithms and their performance for specific
classes of parametric signals. In [3] the estimation problem
associated with the class of finite rate innovation signals has
been also examined. To define our detection scheme, let us
introduce the following sequential partial sum process, which
represents the sequence of the estimators as a step function

Falsst)=vT > - fim0)Ka(rt), 3

0<i<|ns]

for 0 < sp < s <1, t € [0,T]. The condition sy < s
ensures that at least the first ng = |nsg | observations are used
ensuring a certain degree of precision in the reconstruction.
This allows us in our asymptotic analysis to replace 6 in
(3) by 6y. Then, for s = k/n the value F,(k/n,t) can be
interpreted as the deviation of 71/2(f,(t) — Eo fi(t)), where
throughout the paper Ejy and P, denote that the expectation
and probability are taken under the null hypothesis, i.e., that
f(t) = f(t;0p). The interpretation of F,(s,t) as a function
of one variable is as follows:

o For fixed ¢ the step function s — F,(s,t) describes
the sequence of deviations of anS 1(t) from f (t;0) as
sampling proceeds.

o For fixed s the function t — F,(s,t) is the current
estimate of the whole signal, using |ns| sampled values.

The sequential nonparametric decision problem for rejecting
the hypothesis Hy : f € S can now be handled by the
following detector statistics. A global maximum detector is
defined as follows

max

M, =min<ng <k <n:
0<t<Tk/n

|.7-'n(k/n, t)‘ > C]u}

for some appropriately chosen control limit cp;. The detector
M, looks at the largest absolute value of the deviation process.
Notice that when calculating the maximum at a candidate time
point Tk/n, the maximum is determined for time points ¢
between 0 and Tk/n. That interval corresponds to the time
frame where observations are present. For ¢ > Tk/n the
estimator fk(t) can be considered as an extrapolation scheme.
Alternatively, one can consider a global integrated detector

Tk/n
I, = min{no <k<mn: / | F(k/m,t)[* dt > 01}
0
for some appropriately chosen control limit c¢;. Without loss
of generality, however, we confine our investigation to the
detector M,,, which is easy to calculate and interpret. In order
to assess the statistical accuracy of the detector M,, we need
to establish the limiting distribution of the process F,(s,t).
This is shown in the next section.
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III. LIMIT DISTRIBUTIONS

The statistical accuracy of the aforementioned detection
scheme M, depends critically on the the choice of the thresh-
old parameter cj;. The asymptotic choice of this parameter can
be obtained from the limiting distribution of F,(s,t). Below
we establish that the limiting distribution is a locally stationary
Gaussian process F (s, t) with mean 0 and a certain covariance
function.

Theorem 1: Suppose the noise process {e } meets Assump-
tion 1. Then under the hypothesis Hy we have

Fn(s,t) = F(s,t), n — 00,

where the limit stochastic process, F(s,t) is given by

Fs) = m/o Ko(T= t)dB(2).

As a result, the process JF (s, t) is a locally stationary Gaussian
process with the following covariance function

cov(F(s1,t1), F(s2,t2))

min(sq,s2)
= Tn/ Ko (Tz,t1)Ka(Tz,ta)dz.
0

The smoothness of the sample paths of the Gaussian process
F(s,t) is determined by smoothness of its variance, i.e.,
the function T'n fos K3/(Tz,t)dz. The above result allows us
to establish the limit of our detector statistic. Under the
conditions of Theorem 1 the following central limit theorem
also holds true.

M, /n=>M = inf{s € [sg,1]: sup |F(s,t)| > cm}-

0<t<sT

These results allow us to specify the control limit cp; in such
a way that the probability of a false alarm in the time frame
[s0, 1] is not greater than « < 1. For our detector M,, one can
proceed as follows. The detection error (under the hypothesis
Hy) occurs if M, /n <1 and Py(M,/n < 1) - P(M < 1)
by the aforementioned result. Since the event {M > 2z} is
equivalent to following one

{ sup sup |F(s,t)| <cm}, 4

50<s<2z 0<t<sT

we can obtain a procedure for selecting cy; with an asymptotic
detection error being equal to «. In fact, we choose cj; as the
1 — o quantile of the distribution of the complement of the
event in (4) with z = 1, i.e., the constant c¢,, is found as the
smallest ¢ being the solution of the following inequality

P( sup sup |F(s,t)] > c) < a, 5)
s€[so0,1] t€[0,sT]

where the probability is taken with respect to the extrema of
the absolute value of the Gaussian process F(s,t).

The question arises how the above results can be applied
in practice. The distribution of the random variable X =
SUP, <s<1 SUPg<i<s7 | F (8, 1)| required to evaluate the false
alarm error can be simulated by Monte Carlo methods using
the following algorithm.

1) Generate trajectories of the Gaussian process JF (s, ¢) on
a grid {(s;,¢t;) ¢ =1,...,N,j = 1,...,N} where
0<s1<-<sy<landO0<t;<---<ty <T.
2) Return X by calculating the maximum of the values
|F(si,t;)| for all (7,7) such that the constraints sy <
s; <land 0 <t; <s;T are satisfied.
3) Repetitions of Step 1 and Step 2 produce realizations of
X that can be utilized for estimating cps(cv).
Simulating the process F(s,t) in Step 1 is feasible, since
the covariance function can be evaluated numerically provided
that 7" and 7 are known. The choice of 7 is critical for the
accuracy of our detectors. We wish to estimate n without
assuming which hypothesis holds, i.e., to estimate 7 using
only the available data {yo,...,yr} without the knowledge
of the signal shape. Here we can utilize the discrepancies of
local means. One of such estimates takes the form

L—1
_ by,

=) (4 - A;)° 6

Nk Q(L—l) j:1( J J 1) ’ ()

_ Jbr+br—1 . _

where A; = 575 " "y /by is the local mean, j =

0,1,...,Land L+ 1= [(k+1)/bi| denotes the number of
data groups. It can be demonstrated [11] that this estimate can
converge to the true 1 with the rate Op(k~1/3) with virtually
no assumptions on the form of the underlying signals.

Having established the asymptotic distributions under the
null hypothesis, it remains to see how our detection method
behaves when f ¢ S, i.e., when the true signal differs from
the target parametric signal. We can consider a class of local
alternatives for modeling this situation, i.e., let

f(t) = f(t; 00) + ang(t)v @)

where a,, is the sequence tending to zero as n — oo and
g(t) is a fixed function assumed to be piecewise continuous
and bounded. Under this condition and Assumption 1 we can
show that under the alternative local hypothesis and the choice
a, = n~'/? the process F,(s,t) has the following limit

sT
FA(s,t) = F(s,t) + T_l/Q/ Ka(z,t)g(z)dz, (8)
0

where F (s, t) is the locally stationary Gaussian process found
in Theorem 1. It is worth noting that if the departure from
the reference signal f(¢;6y) in the local alternative in (7) is
of order a,, = O(n=?), for 3 > 1/2, then there is no visible
effect on the asymptotic distribution, i.e., F,,(s,t)=F(s,t).
Thus, even in large samples there is no chance to detect such
small departures from the target signal. The rate 5 = 1/2 is the
right order for getting a non-trivial limit distribution. The result
in (8) allows us to evaluate the power P, = P, (T M, /n < T)
of our detector. In fact, the limit in (8) yields

lim P, = P( sup sup |FA(s,t)] > CM> ()
n—00 50<s<10<t<sT
This holds for any cp; but the proper value of cp; can be
obtained by satisfying the bound for the probability of false
alarm in (5). In practise, the probability in (9) can be evaluated
by the aforementioned Monte Carlo algorithm.
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T 0.01 0.015 0.02 0.025 0.03
rr  0.0924  0.0640 0.0571 0.0480  0.0432
TABLE 1

SIMULATED REJECTION RATE FOR VARIOUS SAMPLING INTERVALS T

IV. SIMULATION STUDIES

In our simulation studies we will focus on the issues related

to the choice of the proper control limit and the resulting
detector rejection rate and power. This is studied in the
context of the length of the sampling interval 7 and the
problem of the influence that selection of the filter bandwidth
) has on the detector power. We assume that the target
signal is fo(t) = sin(4t) on [0,2]. This signal undergoes
the jump-point distortion to produce the alternative signal
fi(t) = fo(t) +0.21(¢ > 1). Taking into account the global
maximum norm detector M,, we follow the proposed Monte
Carlo algorithm to estimate the proper control limit cj; being
the sample 95%-quantile of 50000 simulation replicates. Our
base reconstruction algorithm is the post-filtering method [5]
utilizing the kernel function KCq(u,t) = sin(Q(t — u))/7(t —
u), where ) is the bandwidth of a low-pass filter. To study
the influence of the sampling interval 7 on cjs, we applied
the above procedure with s = 0.1, /5 = 0.2, @ = 10,
n = 100. The true rejection rate (the probability of rejection
under the null hypothesis) denoted by r, was estimated by
a Monte Carlo simulation with 50000 repetitions for each
given 7 € {0.01,...,0.03}. Since nT = T therefore this
corresponds to the design intervals ranging from [0, 1] to [0, 3].
Note that the fixed value 7 = 0.02 was used in the illustrative
example. Table I provides the results. It can be seen that there
is some influence of the sampling interval on the accuracy of
the approximation, but it is still moderate for a rather large
range of values of 7. There is an evident drop in the value
of the rejection rate for 7 larger than 0.01 corresponding to
design intervals larger than [0, 1].
Next, we studied the influence of the filter bandwidth 2 of
our reconstruction algorithm fn (t) on the detection power
(defined in (9)) using the corrected control limit. The param-
eter n was estimated by the method mentioned in Section
III. We employed the fixed alternative fi(t) = fo(t) +
0.1sin (8(t —1)+ %) ,t € [0,2]. This alternative is charac-
terized by the frequency and phase deformation, although the
difference between fj(¢) and f;(¢) is small. The results (shown
in Figure 1) indicate that there is an optimal value Q* € [8, 12]
that maximizes the detector power. The value of €2* is about
10.5 for n ranging from 500 to 1000. The corresponding power
for the optimal values of 2 is above 95% (n = 750) and 99%
(n = 1000). This is a quite remarkable fact noting that the Lo
norm of f1(t) — fo(t) is as small as 0.0098.

V. CONCLUDING REMARKS

We investigated a new joint sampling-detection procedure
for testing the parametric form of a signal observed in the

1.0

//\

0.9
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0.7
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0.6
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Fig. 1. Simulated power in (9) to detect a change in frequency and phase as
a function of Q € [8,12] for the sample sizes n = 750 (bottom curve) and
n = 1000.

presence of correlated noise. Our detection methods are based
on sequentially applied reconstruction algorithms which are
related to linear sampling schemes. The asymptotic distribu-
tion of our detectors is established via functional central limit
theorems and Donsker’s invariance principle. This allows us to
evaluate the probability of false alarm and the corresponding
control limit. The asymptotic performance under local alter-
natives is also examined.
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