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Abstract—The projection method is an atomic signal decom-
position designed for adaptive frequency band (AFB) and ultra-
wide-band (UWB) systems. The method first windows the signal
and then decomposes the signal into a basis via a continuous-
time inner product operation, computing the basis coefficients
in parallel. The windowing systems are key, and we develop
systems that have variable partitioning length, variable roll-off
and variable smoothness. These include systems developed to
preserve orthogonality of any orthonormal systems between ad-
jacent blocks, and almost orthogonal windowing systems that are
more computable/constructible than the orthogonality preserving
systems. The projection method is, in effect, an adaptive Gabor
system for signal analysis. The natural language to express this
structure is frame theory.

I. INTRODUCTION

Adaptive frequency band (AFB) and ultra-wide-band
(UWB) systems present challenges to current methods of
signal processing. Despite extensive advances, wideband prob-
lems continue to hit barriers in sampling architectures and
analog-to-digital conversion (ADC). ADC signal-to-noise and
distortion ratio (the effective number of resolution bits) de-
clines with sampling rate due to timing jitter, circuit imper-
fections, and electronic noise. ADC performance (speed and
total integrated noise) can be improved to some extent, e.g., by
cooling. However, the energy cost may be significant, and this
presents a major hurdle for implementation in miniaturized
devices. Digital circuitry has provided dramatically enhanced
DSP operation speeds, but there has not been a corresponding
dramatic energy capacity increase in batteries to operate these
circuits. Moore’s Law for chips is slowing down, and there is
no Moore’s Law for batteries or ADCs.

A growing number of applications face this challenge,
such as miniature and hand-held devices for communications,
robotics, and micro aerial vehicles (MAVs). Very wideband
sensor bandwidths are desired for dynamic spectrum access
and cognitive radio, radar, and ultra-wideband systems. Multi-
channel and multi-sensor systems compound the issue, such
as MIMO, array processing and beamforming, multi-spectral
imaging, and vision systems. All of these rely on analog
sensing and a digital interface, perhaps with feedback. This
motivates mixed-signal circuit designs that tightly couple the
analog and digital portions, and operate with parallel reduced
bandwidth paths to relax ADC requirements. The goal of
such wideband integrated circuit designs is to achieve good
tradeoffs in dynamic range, bandwidth, and parallelization,
while maintaining low energy consumption.

From a signal processing perspective, we can approach this
problem by implementing an appropriate signal decomposi-
tion in the analog portion that provides parallel outputs for
integrated digital conversion and processing. This naturally
leads to an architecture with windowed time segmentation
and parallel analog basis expansion. In this paper we view
this from the sampling theory perspective, including segmen-
tation and window design, achieving orthogonality between
segments, basis expansion and choice of basis, signal filtering,
and reconstruction. Definitions and computations for the paper
follow those given in Benedetto [1].

II. WINDOWING

We first construct smooth bounded adaptive partitions of
unity, or BAPU Systems. These are generalizations of bounded
uniform partitions of unity (BUPU Systems) in that they
allow for signal adaptive windowing. These systems give a
flexible adaptive partition of unity of variable smoothness
and are useful whenever a partition of unity is used, such
as in compressed sensing. The construction elements for
this system are B-splines. The second type of system we
develop preserves orthogonality of any orthonormal (ON)
system between adjacent blocks. The construction here uses
any orthonormal basis for L2(R) and is created by solving
a Hermite interpolation problem with constraints. These ON
preserving window systems were the motivation for the meth-
ods in this paper. They allow us to create a method of time-
frequency analysis for a wide class of signals. The third type
of system we develop uses the concept of almost orthogonality
developed by Cotlar, Knapp and Stein. It employs our B-spline
techniques to create almost orthogonal windowing systems
that are more computable/constructible than the orthogonality
preserving systems.

The windowing systems for the partition of unity {Bk(t)}
satisfy

∑
k Bk(t) ≡ 1 . The key difference between the

partition of unity systems and (ON) systems is that the second
preserves orthogonality. Preserving orthogonality requires that
the windowing systems {Wk(t)} satisfy

∑
k [Wk(t)]2 ≡ 1 .

The almost orthogonal systems require that there exists a δ,
0 ≤ δ ≤ 1/2 such that for all k

1− δ ≤ [Ak(t)]2 + [Ak+1(t)]2 ≤ 1 + δ

for t ∈ [kT, (k + 1)T ].
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A. Partition of Unity Systems

The theory of B-splines gives us the tools to create smooth
partition of unity systems.

Definition 1 (Bounded Adaptive Partition of Unity): A
Bounded Adaptive Partition of Unity is a set of functions
{Bk(t)} such that

(i.) supp(Bk(t)) ⊆ [kT − r, (k + 1)T + r] ,
(ii.) Bk(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,

(iii.)
∑

k

Bk(t) ≡ 1 ,

(iv.) {B̂k
◦[n]} ∈ l1 . (1)

Conditions (i.), (ii.) and (iii.) make {Bk(t)} a bounded
partition of unity. Condition (iii.) means that these systems do
not preserve orthogonality between blocks. We will generate
our systems by translations and dilations of a given window
BI , where supp(BI) = [(−T/2− r), (T/2 + r)].

Our general window function WI is k-times differentiable,
has supp(BI) = [(−T/2− r), (T/2 + r)] and has values

BI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r
(2)

We solve for ρ(t) by solving the Hermite interpolation
problem

(a.) ρ(T/2− r) = 1
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . , k
(c.) ρ(n)(T/2 + r) = 0 , n = 0, 1, 2, . . . , k ,

with the conditions that ρ ∈ Ck and

[ρ(t)] + [ρ(−t)] = 1 for t ∈ [T/2− r, T/2 + r] . (3)

We use B-splines as our cardinal functions. Let 0 < α �
β and consider χ

[−α,α]. We want the n-fold convolution of
χ

[α,α] to fit in the interval [−β, β]. Then we choose α so that
0 < nα < β and let

Ψ(t) = χ
[−α,α] ∗ χ

[−α,α] ∗ · · · ∗ χ
[−α,α](t)︸ ︷︷ ︸

n−times

.

The β-periodic continuation of this function, Ψ◦(t) has the
Fourier series expansion∑

k 6=0

α

nβ

[
sin(πkα/nβ)

2πkα/nβ

]n

exp(πikt/β) .

The Ck solution for ρ is given by a theorem of Schoenberg
(see [7], pp. 7-8). Schoenberg solved the Hermite interpolation
problem (a.) S(n)(−1) = 0 , n = 0, 1, 2, . . . , k ,

(b.) S(1) = 1 ,
(b.) S(n)(1) = 0 , n = 1, 2, . . . , k .

An interpolant that minimizes the Chebyshev norm is called
the perfect spline. The perfect spline S(t) for Hermite problem
above is given by the integral of the function

M(x) = (−1)n
k∑

j=0

Ψ(t− tj)
φ′(tj)

,

where Ψ is the (k+1) convolution of characteristic functions,
the knot points are tj = − cos(πj

k ) and φ(t)
∏k

j=0(t− tj). We
then have that ρ(t) = S ◦ `(t) , where `(t) = 1

r t − 2T
2r . For

this ρ, and for

BI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r

we have that B̂I(ω) is given by the antiderivative of a linear
combination of functions of the form [sin(ω)/ω]k+1 , and
therefore has decay 1/ωk+2 in frequency.

B. Orthogonality Preserving Systems

Our first system of signal segmentation uses sine, cosine and
linear functions. This was created because it is relatively easy
to implement, cuts down on frequency error and preserves
orthogonality. Consider a signal block of length T + 2r
centered at the origin. Let 0 < r � T . Ideally, we would
like to make r as small as possible. Define Cap(t) as follows.


0 |t| ≥ T

2 + r ,
1 |t| ≤ T

2 − r ,
sin(π/(4r)(t + (T/2 + r))) −T

2 − r < t < −T
2 + r ,

cos(π/(4r)(t− (T/2− r))) T
2 − r < t < T

2 + r .
(4)

Given Cap, we form a tiling system {Capk(t)} such that
supp(Capk(t)) ⊆ [kT − r, (k + 1)T + r] for all k. Note that
the Cap window has several properties that make it a good
window for our purposes. It has a partition property in that it
windows the signal in [−T

2 − r, T
2 + r] and is identically 1 on

[−T
2 + r, T

2 − r]. It has a continuous roll-off at the endpoints.
Finally, it has the property that for all t ∈ R

[Capk(t)]2 + [Capk+1(t)]
2 = 1 .

This last condition is needed to preserve the orthogonality of
basis elements between adjacent blocks. Additionally, it has
1/ω2 decay in frequency space, and, when one time block is
ramping down, the adjacent block is ramping up at exactly the
same rate. If we had a signal f with an absolutely convergent
Fourier series,

(f · Cap)k̂[n] =
∑
m

f [n−m]Cap̂[m] = f̂ ∗ Cap̂[n] .

The Fourier transform of Cap is a linear combination of
sinc(ω) and sin(ω) functions and has an asymptotic 1/ω2

decay.
The theory of splines gives us the tools to generalize this

system. The idea is to cut up the time domain into perfectly
aligned segments so that there is no loss of information.
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We also want the systems to be smooth, so as to provide
control over decay in frequency, and adaptive, so as to adjust
accordingly to changes in frequency band. Finally, we develop
our systems so that the orthogonality of bases in adjacent and
possible overlapping blocks is preserved.

Definition 2 (ON Window System): An ON Window System
is a set of functions {Wk(t)} such that for all k ∈ Z

(i.) supp(Wk(t)) ⊆ [kT − r, (k + 1)T + r] ,
(ii.) Wk(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,
(iii.) Wk is symmetric about its midpoint ,

(iv.) [Wk(t)]2 + [Wk+1(t)]2 = 1 ,

(v.) {Ŵk
◦[n]} ∈ l1 . (5)

Conditions (i.) and (ii.) are partition properties, in that
they give an exact snapshot of the input function f on
[kT + r, (k + 1)T − r] with smooth roll-off at the edges.
Conditions (iii.) and (iv.) are needed to preserve orthogonal-
ity between adjacent blocks. Condition (v.) is needed for the
computation of Fourier coefficients. We generate our systems
by translations and dilations of a given window WI , where
supp(WI) = [−T/2− r, T/2 + r]. Our next proposition
shows the need for the condition (v.). Let I = T +2r and let
PWΩ denote the Paley-Wiener space for bandlimit Ω.

Proposition 1: Let f ∈ PWΩ and let {Wk(t)} be an ON
Window System with generating window WI . Then

1
I

∫ T/2−r

−T/2−r

[f ·WI ]◦(t) exp(−2πint/[I]) dt = f̂ ∗ŴI [n] . (6)

Our general window function WI is k-times differentiable,
has supp(WI) = [−T/2− r, T/2 + r] and has values

WI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r
(7)

We solve for ρ(t) by solving the Hermite interpolation
problem

(a.) ρ(T/2− r) = 1
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . , k
(c.) ρ(n)(T/2 + r) = 0 , n = 0, 1, 2, . . . , k ,

with the conditions that ρ ∈ Ck and

[ρ(t)]2 + [ρ(−t)]2 = 1 for t ∈ [±(
T

2
− r),±(

T

2
+ r)] . (8)

The constraint (8) directs us to get solutions expressed in
terms of sin(t) and cos(t). Solving for ρ so that the window
in C1, we get that ρ(t) equals

√[
1− 1

2

[
1− sin( π

2r (T
2 − t))

]2]
T
2 − r ≤ t ≤ T

2

1√
2

[
1− sin( π

2r (t− T
2 ))

]
T
2 ≤ t ≤ T

2 + r .

(9)
With each degree of smoothness, we get an additional degree
of decay in frequency.

C. Orthogonality Between Blocks

We designed the ON Window Systems {Wk(t)} so that they
would preserve orthogonality of basis element of overlapping
blocks. Because of the partition properties of these systems, we
need only check orthogonality of adjacent overlapping blocks.
The best way to think about the construction is to visualize
how one would do the extension for a system of sines and
cosines. We would extend the odd reflections about the left
endpoint and the even reflections about the right. Let {ϕj(t)}
be an orthonormal basis for L2[−T/2, T/2]. Define

ϕ̃j(t) =


0 |t| ≥ T/2 + r

ϕj(t) |t| ≤ T/2− r
−ϕj(−T − t) −T/2− r < t < −T/2

ϕj(T − t) T/2 < t < T/2 + r .
(10)

Theorem 1: {Ψk,j} = {Wkϕ̃j(t)} is an ON basis for
L2(R).
Proof : See [3]. �

D. Almost Orthogonal Systems

The Partition of Unity Systems do not preserve orthogo-
nality between blocks. However, they are easier to compute
in both time and frequency. Therefore, these systems can be
used to approximate the Cap system with B-splines. We get
windowing systems that nearly preserve orthogonality. Each
added degree of smoothness in time adds to the degree of
decay in frequency.

Cotlar, Knapp and Stein introduced almost orthogonality via
operator inequalities. The concept allows us to create window-
ing systems that are more computable/constructible such as the
Bounded Adaptive Partition of Unity Systems {Bk(t)} with
the orthogonality preservation of the ON Window Systems
{Wk(t)}.

Definition 3 (Almost ON System): Let 0 < r � T . An
Almost ON System for adaptive and ultra-wide band sam-
pling is a set of functions {Ak(t)} for which there exists δ,
0 ≤ δ < 1/2, such that

(i.) supp(Ak(t)) ⊆ [kT − r, (k + 1)T + r] ,
(ii.) Ak(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,
(iii.) Ak((kT + T/2)− t) = Ak(t− (kT + T/2)) ,

(iv.) 1− δ ≤ [Ak(t))]2 + [Ak+1(t))]2 ≤ 1 + δ ,

(v.) {Âk
◦[n]} ∈ l1 .

Starting with Cap(t), let ∆(T,r) = T+2r
m . By placing equidis-

tant knot points −T/2 − r = x0,−T/2 − r + ∆(T,r) =
x1, . . . , T/2 + r = xm, we can construct Cm−1 polynomial
splines Sm+1 approximating Cap(t) in [(−T/2 − r), (T/2 +
r)] . A theorem of Curry and Schoenberg gives that the set of
B-splines {B(m+1)

−(m+1), . . . , B
(m+1)
k } forms a basis for Sm+1.

Therefore, Cap(t) ≈
∑k

i=−(m+1) aiB
(m+1)
i . Let

δ =
∥∥∥∥ k∑

i=−(m+1)

aiB
(m+1)
i − Cap(t)

∥∥∥∥
∞

.
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Then, δ < 1/2, with the largest value for the piecewise linear
spline approximation. Moreover, δ −→ 0 as m and k increase.
Thus we get computable windowing systems that nearly pre-
serve orthogonality. Each added degree of smoothness in time
adds to the degree of decay in frequency.

III. SIGNAL EXPANSIONS

Given characteristics of the class of input signals, the
choice of basis functions used can be tailored to optimal
representation of the signal or a desired characteristic in the
signal.

Theorem 2 (The Projection Formula for ON Windowing):
Let {Wk(t)} be an ON Window System, and let {Ψk,j} be
an orthonormal basis that preserves orthogonality between
adjacent windows. Let f ∈ PWΩ and N = N(T,Ω) be such
that 〈f · Wk,Ψk,n〉 = 0 for all n > N and all k. Then,
f(t) ≈ fP(t), where

fP(t) =
∑
k∈Z

[ N∑
n=−N

〈f ·Wk,Ψk,n〉Ψk,n(t)
]

. (11)

This theorem gives a new method for A-D conversion.
Unlike the Shannon method which examined the function at
specific points, then used those individual points to recreate the
curve, the projection method breaks the signal into time blocks
and then approximates their respective periodic expansions
with a Fourier series. This process allows the system to
individually evaluate each piece and base its calculation on
the needed bandwidth. The individual Fourier series are then
summed, recreating a close approximation of the original
signal. It is important to note that instead of fixing T , the
method allows us to fix any of the three while allowing the
other two to fluctuate. From the design point of view, the
easiest and most practical parameter to fix is N . For situations
in which the bandwidth does not need flexibility, it is possible
to fix Ω and T by the equation N = dT · Ωe. However, if
greater bandwidth Ω is need, choose shorter time blocks T .

The windowing systems above allow us to develop Signal
Adaptive Frame Theory. The idea is as follows. If we work
with an ON Windowing System {Wk(t)}, let {Ψk,j} be
an orthonormal basis that preserves orthogonality between
adjacent windows. Let f ∈ PWΩ and N = N(T,Ω) be such
that 〈f ·Wk,Ψk,n〉 = 0 for all n > N and all k. Then

f(t) =
∑
k∈Z

[∑
n∈Z

〈f ·Wk,Ψk,n〉Ψk,n(t)
]

. (12)

This also gives

‖f‖2 =
∑
k∈Z

[∑
n∈Z

|〈f ·Wk,Ψk,n〉|2
]

. (13)

Given that {Ψk,j} = {Wkϕ̃j(t)} is an orthonormal basis
for L2(R), we have a representation of a given function f in
L2. The set {Ψk,j} = {Wkϕ̃j(t)} is an exact normalized tight
frame for L2. The restriction that these basis elements present
is computability. They become increasing difficult to compute
as the smoothness in time/decay in frequency increases.

A way around this is to connect the Bounded Adaptive
Partition of Unity Systems {Bk(t)} to frame theory. The ideas
behind this connection go back to the curvelet work of Candès
and Donoho. The paper of Borup and Neilsen [2] gives a nice
overview of this connection, and we will refer to that paper for
the background from which we develop our approach. The set
{Bk(t)} form an admissible cover, in that they form a partition
of unity and have overlap with only their immediate neighbors.

For each window Bk(t), let φn,k(t) be the shifted
exp[πitT/n] centered in the window. Then define

Φk,n = Bk(t)φk,n(t) .

Given and f ∈ L2 we can write

f(t) ≈
∑
k∈Z

[∑
n∈Z

〈f · Bk,Φk,n〉Φk,n(t)
]

. (14)

For this system we can compute

A‖f‖ ≤
∑
k∈Z

[∑
n∈Z

|〈f · Bk,Φk,n〉|2
]
≤ B‖f‖ . (15)

The bounds are a function of how much of the signal is
concentrated in the overlap regions and will be tightened
for the almost orthogonal windowing systems. The closer the
approximation, the better the frame bounds. Developing these
signal adaptive frames, their bounds and the associated frame
operators will be a major point of emphasis in future work. We
will additionally develop biorthogonal adaptive frames using
our B-spline constructions. We conjecture the following:

A1−δ‖f‖2 ≤
∑
k∈Z

[∑
n∈Z

|〈f ·Ak,Ψk,n〉|2
]
≤ A1+δ‖f‖2

. (16)

Moreover, this −→ Normalized Tight Frame as δ −→ 0.
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