
Shannon Sampling and Parseval
Frames on Compact Manifolds

Isaac Z. Pesenson
Temple University and CCP

Philadelphia, USA
Email: pesenson@temple.edu

I. INTRODUCTION

The problem of representation and analysis of functions
defined on manifolds (signals, images, and data in general)
is ubiquities in many fields ranging from statistics and cos-
mology to neuroscience and biology. It is very common
to consider input signals as points in a high-dimensional
measurement space, however, meaningful structures lay on a
manifold embedded in this space.

In the last decades, the importance of these applications
triggered the development of various generalized wavelet bases
suitable for the unit spheres S2 and S3 and the rotation group
of R3. The goal of the present study is to describe a general
approach to bandlimited localized Parseval frames in a space
L2(M), where M is a compact homogeneous Riemannian
manifold.

One can think of a Riemannian manifold as of a surface
in a Euclidean space. A homogeneous manifold is a surface
with ”many” symmetries like the sphere x2

1 + ...+ x2
d = 1 in

Euclidean space Rd.
Our construction of frames in a function space L2(M)

heavily depends on proper notions of bandlimitedness and
Shannon-type sampling on a manifold M. The crucial role
in this development is played by positive cubature formulas
(Theorem 1.3) and by the product property (Theorem 1.2),
which were proved in [1] and [10].

The notion of bandlimideness on a compact manifold M
is introduced in terms of eigenfunctions of a certain second-
order differential elliptic operator on M. The most important
fact for our construction of frames is that in a space of
ω-bandlimited functions the regular L2(M) norm can be
descretized. This result in the case of compact manifolds
(and even non-compact manifolds of bounded geometry) was
first discovered and explored in many ways in our papers
[?]-[?]. In the classical cases of straight line R and circle
S the corresponding results are known as Plancherel-Polya
and Marcinkiewicz-Zygmund inequalities. Our generalization
of Plancherel-Polya and Marcinkiewicz-Zygmund inequalities
implies that ω-bandlimited functions on manifolds are com-
pletely determined by their vales on discrete sets of points
”uniformly” distributed over M with a spacing comparable
to 1/

√
ω and can be completely reconstructed in a stable

way from their values on such sets. The last statement is an
extension of the Shannon sampling theorem to the case of

Riemannian manifolds.
Our article is a summary of some results for Riemannian

manifolds that were obtained in [1]-[12]. To the best of our
knowledge these are the pioneering papers which contain the
most general results about frames, Shannon sampling, and
cubature formulas on compact and non-compact Riemannian
manifolds. In particular, the paper [1] gives an ”end point”
construction of tight localized frames on homogeneous com-
pact manifolds. The paper [11] is the first systematic devel-
opment of localized frames on compact domains in Euclidean
spaces.

A. Compact homogeneous manifolds

A homogeneous compact manifold M is a C∞-compact
manifold on which a compact Lie group G acts transitively.
In this case M is necessary of the form G/H , where H is a
closed subgroup of G. The notation L2(M), is used for the
usual Hilbert spaces, where dx is an invariant measure.

If g is the Lie algebra of a compact Lie group G then it is
a direct sum g = a + [g, g], where a is the center of g, and
[g, g] is a semi-simple algebra. Let Q be a positive-definite
quadratic form on g which, on [g, g], is opposite to the Killing
form. Let X1, ..., Xd be a basis of g, which is orthonormal
with respect to Q. Since the form Q is Ad(G)-invariant, the
operator

−X2
1 −X2

2 − ...−X2
d , d = dim G

is a bi-invariant operator on G, which is known as the Casimir
operator. This implies in particular that the corresponding
operator on L2(M),

L = −D2
1 −D2

2 − ...−D2
d, Dj = DXj , d = dim G, (1)

commutes with all operators Dj = DXj . Operator L, which is
usually called the Laplace operator, is the image of the Casimir
operator under differential of quazi-regular representation in
L2(M). Note that if M = G/H is a compact symmetric
space then the number d = dimG of operators in the formula
(1) can be strictly bigger than the dimension n = dimM. For
example on a two-dimensional sphere S2 the Laplace-Beltrami
operator LS2 is written as LS2 = D2

1 + D2
2 + D2

3, where
Di, i = 1, 2, 3, generates a rotation in R3 around coordinate
axis xi: Di = xj∂k − xk∂j , where j, k 6= i.

It is important to realize that in general, the operator L is
not necessarily the Laplace-Beltrami operator of the natural
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invariant metric on M. But it coincides with such operator at
least in the following cases:

1) If the manifold M is itself a compact Lie group G then L
is exactly the Laplace-Beltrami operator of an invariant
metric on G. In particular it happens if M is an n-
dimensional torus, and L is the sum of squares of partial
derivatives;

2) If M = G/H is a compact symmetric space of rank
one, then the operator L is proportional to the Laplace-
Beltrami operator of an invariant metric on G/H . This
follows from the fact that, in the rank one case, every
second-order operator which commutes with all isome-
tries x → g · x, x ∈ M, g ∈ G, is proportional to
the Laplace-Beltrami operator. The important examples
of such manifolds are spheres and projective spaces.

Since manifold M is compact and L is a second-order dif-
ferential elliptic self-adjoint positive definite operator L2(M)
it has a discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ ...... which
goes to infinity and there exists a complete family {uj} of
orthonormal eigenfunctions which form a basis in L2(M).

Definition 1.1: The span of eigenfunctions uj

Luj = λjuj

with λj ≤ ω, ω > 0, is denoted as Eω(L) and is called the
space of bandlimited functions on M of bandwidth ω.

According to the Weyl’s asymptotic formula one has

dimEω(L) ∼ C V ol(M)ωn/2, (2)

where n = dimM and C is an absolute constant.
Let B(x, r) be a metric ball on a compact Riemannian

manifold M whose center is x and radius is r. The following
lemma can be found in [2], [5].

Lemma 1.1: There exists a natural number NM, such that
for any sufficiently small ρ > 0, there exists a set of points
{xk} such that:

1) the balls B(xk, ρ/4) are disjoint,
2) the balls B(xk, ρ/2) form a cover of M,
3) the multiplicity of the cover by balls B(xk, ρ) is not

greater than NM.

Definition 1.2: Any set of points Mρ = {xk} which is
described in Lemma 1.1 will be called a metric ρ-lattice.

The following theorems are of primary importance.
Theorem 1.2: (Product property [1], [10]) If M = G/H is

a compact homogeneous manifold and L is the same as above,
then for any f and g belonging to Eω(L), their product fg
belongs to E4dω(L), where d is the dimension of the group
G.

Remark 1: At this moment it is not known if the constant
4d can be lowered in general situation. However, it is easy to
verify that in the case of two-point homogeneous manifolds
(which include spheres and projective spaces) a stronger result
holds: if f, g ∈ Eω(L) then fg ∈ E2ω(L).

Theorem 1.3: (Cubature formula [1], [10]) There exists a
positive constant c = c(M), such that if ρ = cω−1/2, then
for any ρ-lattice Mρ, there exist strictly positive coefficients

αxk > 0, xk ∈Mρ, for which the following equality holds
for all functions in Eω(M):∫

M

fdx =
∑

xk∈Mρ

αxkf(xk). (3)

Moreover, there exists constants c1, c2, such that the follow-
ing inequalities hold:

c1ρ
n ≤ αxk ≤ c2ρn, n = dim M. (4)

II. HILBERT FRAMES

Since eigenfunctions have perfect localization properties in
the spectral domain they cannot be localized on the manifold.

It is the goal of our development to construct ”better bases”
in corresponding L2(M) spaces which will have rather strong
localization on a manifold and in the spectral domain.

In fact, the ”kind of basis” which we are going to construct
is known today as a frame.

A set of vectors {ψv} in a Hilbert space H is called a frame
if there exist constants A,B > 0 such that for all f ∈ H

A‖f‖22 ≤
∑
v

|〈f, ψv〉|2 ≤ B‖f‖22. (5)

The largest A and smallest B are called lower and upper frame
bounds.

The set of scalars {〈f, ψv〉} represents a set of measure-
ments of a signal f . To synthesize signal f from this set of
measurements one has to find another (dual) frame {Ψv} and
then a reconstruction formula is

f =
∑
v

〈f, ψv〉Ψv. (6)

Dual frame is not unique in general. Moreover it is difficult
to find a dual frame. If in particular A = B = 1 the frame is
said to be tight or Parseval.

The main feature of Parseval frames is that decomposing
and synthesizing a signal or image from known data are tasks
carried out with the same set of functions. In other words in
(6) one can have Ψv = ψν .

Parseval frames are similar in many respects to orthonormal
wavelet bases. For example, if in addition all vectors ψv
are unit vectors, then the frame is an orthonormal basis.
However, the important differences between frames and, say,
orthonormal bases is their redundancy that helps reduce the
effect of noise in data.

Frames in Hilbert spaces of functions whose members
have simultaneous localization in space and frequency arise
naturally in wavelet analysis on Euclidean spaces when con-
tinuous wavelet transforms are discretized. Such frames have
been constructed, studied, and employed extensively in both
theoretical and applied problems.

III. BANDLIMITED LOCALIZED PARSEVAL FRAMES ON
COMPACT HOMOGENEOUS MANIFOLDS

According to spectral theorem if F is a Schwartz function
on the line, then there is a well defined operator F (L) in the
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space L2(M) such that for any f ∈ L2(M) one has

(F (L)f) (x) =
∫
M

KF (x, y)f(y)dy, (7)

where dy is the invariant normalized measure on M and

KF (x, y) =
∞∑
j=0

F (λj)uj(x)uj(y). (8)

We will be especially interested in operators of the form
F (t2L), where F is a Schwartz function and t > 0. The
corresponding kernel will be denoted as KFt (x, y) and

KFt (x, y) =
∞∑
j=0

F (t2λj)uj(x)uj(y). (9)

Note, that variable t here is a kind of scaling parameter.
Localization properties of the kernel KFt (x, y) are given in

the following statement.
Lemma 3.1: If L is an elliptic self-adjoint second order

differential operators on compact manifolds, then the following
holds

1) If F is any Schwartz function on R , then

KFt (x, x) ∼ c t−d, t→ 0. (10)

2) If, in addition, F ∈ C∞c (R) is even, then on M×M\∆,
where ∆ = {(x, x)}, x ∈M, KFt (x, y) vanishes to infinite
order as t goes to zero.

Let g ∈ C∞(R+) be a monotonic function such that
supp g ⊂ [0, 22], and g(s) = 1 for s ∈ [0, 1], 0 ≤
g(s) ≤ 1, s > 0. Setting G(s) = g(s) − g(22s) implies
that 0 ≤ G(s) ≤ 1, s ∈ supp G ⊂ [2−2, 22]. Clearly,
supp G(2−2js) ⊂ [22j−2, 22j+2], j ≥ 1. For the functions
F0(s) =

√
g(s), Fj(s) =

√
G(2−2js), j ≥ 1, one has∑

j≥0 F
2
j (s) = 1, s ≥ 0. Using the spectral theorem for L

one can define bounded self-adjoint operators Fj(L) as

Fj(L)f(x) =
∫
M

KF2−j (x, y)f(y)dy,

where

KF2−j (x, y) =
∑

λm∈[22j−2,22j+2]

F (2−2jλm)um(x)um(y).

(11)
The same spectral theorem implies

∑
j≥0 F

2
j (L)f = f, f ∈

L2(M), and taking inner product with f gives

‖f‖2 =
∑
j≥0

〈
F 2
j (L)f, f

〉
=
∑
j≥0

‖Fj(L)f‖2. (12)

Moreover, since the function Fj(s) has its support in
[22j−2, 22j+2] the functions Fj(L)f are bandlimited to
[22j−2, 22j+2].

Consider the sequence ωj = 22j+2, j = 0, 1, ..... By (12) the
equality ‖f‖2 =

∑
j≥0 ‖Fj(L)f‖2 holds, were every function

Fj(L)f is bandlimited to [22j−2, 22j+2]. Since for every
Fj(L)f ∈ E22j+2(L) one can use Theorem 1.2 to conclude
that

|Fj(L)f |2 ∈ E4d22j+2(L),

where d = dim G, M = G/H . This shows that for every
f ∈ L2(M) we have the following decomposition∑
j≥∞

‖Fj(L)f‖22 = ‖f‖22, |Fj(L)f |2 ∈ E4d22j+2(L). (13)

According to Theorem 1.3 there exists a constant a > 0 such
that for all integers j if

ρj = ad−1/22−j ∼ 2−j , d = dim G, M = G/H, (14)

then for any ρj-lattice Mρj one can find coefficients µj,k with
µj,k ∼ ρnj , n = dimM, for which the following exact cubature
formula holds

‖Fj(L)f‖22 =
Kj∑
k=1

µj,k |Fj(L)f(xj,k)|2 , (15)

where xj,k ∈Mρj , k = 1, . . . ,Kj = card (Mρj ). Using the
kernel KF2−j of the operator Fj(L) we define the functions

Θj,k(y) =
√
µj,k KF2−j (xj,k, y) =

√
µj,k

∑
λm∈[22j−2,22j+2]

F (2−2jλm)um(xj,k)um(y). (16)

We find that for every f ∈ L2(M) the following equality holds
‖f‖22 =

∑
j,k |〈f,Θj,k〉|2.

Theorem 3.2: (Kernel localization [1]) If M is compact
then the functions Θj,k are localized around the points xj,k in
the sense that for any N > 0 there exists a C(N) > 0 such
that

|Θj,k(x)| ≤ C(N)
2dj

max(1, 2jd(x, xj,k))N
, (17)

for all natural j.
Theorem 3.3: (Bandlimited localized Parseval localized

frames on homogeneous manifolds) For any compact homo-
geneous manifold M the set of functions {Θj,k}, constructed
in (16) forms a Parseval frame in the Hilbert space L2(M).
In particular the following reconstruction formula holds true

f =
∑
j≥0

Kj∑
k=1

〈f,Θj,k〉Θj,k, (18)

with convergence in L2(M). Every Θj,k is bandlimited to
[22j−2, 22j+2] and its localization on manifold is given by (17).

The condition (14) imposes a specific rate of sampling in
(15). It is interesting to note that this rate is essentially optimal.
Indeed, on one hand the Weyl’s asymptotic formula (2) gives
the dimension of the space Eω(L). On the other hand, the
condition (14) and the definition of a ρ-lattice imply that the
number of points in an ”optimal” lattice Mρj for ρj ∼ 2−j

can be approximately estimated as

cardMρj ∼ c
V ol(M)
2−jn/2

= cV ol(M)2jn/2, n = dimM,

which is in agreement with the Weyl’s formula (2) with ω ∼
2j .
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IV. SHANNON SAMPLING OF BANDLIMITED FUNCTIONS

We consider an even F ∈ C∞c (R) which equals 1 on
[−1, 1], and which is supported in [−Ω, Ω], Ω > 1. Let
KF

Ω−1/2(x, y) be the kernel of F (Ω−1L) defined by (9). If
0 < ω ≤ Ω then since F (Ω−1λk) = 1 whenever λk ≤ ω,
we have that according to (7) - (9) for every f ∈ Eω(L) the
following reproducing formula holds

f(x) =
[
F (Ω−1L)f

]
(x) =

∫
M

KFΩ−1/2(x, y)f(y)dy (19)

where dy is the normalized invariant measure. Clearly, for
a fixed x ∈ M the kernel KF

Ω−1/2(x, y) as a function in
y belongs to EΩ(L). Thus, for f ∈ Eω(L), ω < Ω,
the Product property (Theorem 1.2) implies that the product
KF

Ω−1/2(x, y)f(y) belongs to E4dΩ(L), where d = dim G.
Now an application of the Cubature formula (Theorem 1.3)
implies the following theorem.

Theorem 4.1: For every compact homogeneous manifold
M = G/H there exists a constant c = c(M) such that for
any Ω > 0 and any lattice Mρ = {xk}mΩ

k=1 with ρ = cΩ−1/2

one can find positive weights µk

µk � Ω−n/2, n = dimM,

such that for any f ∈ Eω(L) with ω ≤ Ω the following analog
of the Shannon formula holds

f(x) =
mΩ∑
k=1

µkf(xk)KFΩ−1/2(x, xk), f ∈ Eω(L). (20)

Remark 2: Note that our definition of a ρ-lattice and the
Weyl’s asymptotic formula (2) for eigenvalues of L imply
that mΩ is “essentially” the dimension of the space E4dΩ(L)
with d = dim G. In other words there exists a constants
C1(M) > 0, C2(M) > 0 (which are independent on Ω) such
that the number mΩ of sampling points satisfies the following
inequalities

C1(M)Ωn/2 ≤ mΩ ≤ C2(M)Ωn/2

C1(M)E4dΩ(L) ≤ mΩ ≤ C2(M)E4dΩ(L). (21)

Remark 3: Lemma 3.1 shows that for large Ω functions
KF

Ω−1/2(x, xk) in (20) are essentially localized around sam-
pling points xk.

V. A DISCRETE FORMULA FOR EVALUATING FOURIER
COEFFICIENTS ON MANIFOLDS.

As another application of the Product Property and the Cu-
bature Formula, we prove an analog of the Shannon Sampling
Theorem on compact homogeneous manifolds.

Theorems 1.2 and 1.3 imply the following theorem which
shows that on a compact homogeneous manifold M there are
finite sets of points which yield exact discrete formulas for
computing Fourier coefficients of bandlimited functions.

Theorem 5.1: For every compact homogeneous manifold
M = G/H there exists a constant c = c(M) such that

for any ω > 0 and any lattice Mρ = {xk}rωk=1 with
ρ = cω−1/2 one can find positive weights µk comparable
to ω−n/2, n = dimM, such that Fourier coefficients ci(f)
of any f in Eω(L) with respect to the basis {ui}∞i=1 can be
computed by the following exact formula

ci(f) =
∫
M

f(x)ui(x)dx =
rω∑
k=1

µkf(xk)ui(xk),

with rω satisfying relations

C1(M)ωn/2 ≤ rω ≤ C2(M)ωn/2

C1(M)E4dω(L) ≤ rω ≤ C2(M)E4dω(L), (22)

where C1(M) and C2(M) are the same as in (21).
We obviously have the following ”discrete” representation

formula of f in Eω(L) in terms of eigenfunctions ui

f =
∑
i

rω∑
k=1

µkf(xk)ui(xk)ui. (23)

ACKNOWLEDGMENT

The work was supported in part by the National Geospatial-
Intelligence Agency University Research Initiative (NURI),
grant HM1582-08-1-0019.

REFERENCES

[1] D. Geller and I. Pesenson, Band-limited localized Parseval frames and
Besov spaces on compact homogeneous manifolds, J. Geom. Anal. 21
(2011), no. 2, 334-37.

[2] I. Pesenson, A sampling theorem on homogeneous manifolds, Trans.
Amer. Math. Soc. 352 (2000), no. 9, 4257–4269.

[3] I. Pesenson, Poincare-type inequalities and reconstruction of Paley-
Wiener functions on manifolds, J. of Geometric Analysis , (4), 1, (2004),
101-121.

[4] I. Pesenson, An approach to spectral problems on Riemannian manifolds,
Pacific J. of Math. Vol. 215(1), (2004), 183-199.

[5] I. Pesenson, Poincare-type inequalities and reconstruction of Paley-
Wiener functions on manifolds, J. of Geometric Analysis , (4), 1, (2004),
101-121.

[6] I. Pesenson, Deconvolution of band limited functions on symmetric
spaces, Houston J. of Math., 32, No. 1, (2006), 183-204.

[7] I. Pesenson, Frames in Paley-Wiener spaces on Riemannian manifolds,
in Integral Geometry and Tomography, Contemp. Math., 405, AMS,
(2006), 137-153.

[8] I. Pesenson, Bernstein-Nikolski inequality and Riesz interpolation For-
mula on compact homogeneous manifolds, J. Approx. Theory,150,
(2008), no. 2, 175-198.

[9] I. Pesenson, A Discrete Helgason-Fourier Transform for Sobolev and
Besov functions on noncompact symmetric spaces, Contemp.Math, 464,
AMS, (2008), 231-249.

[10] I. Pesenson, D. Geller, Cubature formulas and discrete fourier transform
on compact manifolds in ”From Fourier Analysis and Number Theory
to Radon Transforms and Geometry: In Memory of Leon Ehrenpreis”
(Developments in Mathematics 28) by Hershel M. Farkas, Robert C.
Gunning, Marvin I. Knopp and B. A. Taylor, Springer NY 2013.

[11] I. Pesenson, Localized Bandlimited nearly tight frames and Besov spaces
on domains in Euclidean spaces, submitted, arXiv:1208.5165v1.

[12] I. Pesenson, Paley-Wiener frames and Besov spaces on non-compact
manifolds, submitted.

Proceedings of the 10th International Conference on Sampling Theory and Applications

308


