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Abstract—The aim of this paper is to give an overview of
diffusive wavelets on compact Lie groups, homogenous spaces
and the Heisenberg group. This approach is based on Lie
groups and representation theory and generalizes well-known
constructions of wavelets on the sphere. We give also examples
for the construction of diffusive wavelets.

I. INTRODUCTION

The task of analyzing data, reconstructing functions from
measurements or to save data in an handable way occurs in
a lot of applications. Problems in geophysics, astronomy and
in material sciences involve groups and homogeneous spaces
such as the group SO(3) or the spheres S? or S3. The group
theoretic approach to wavelets as coherent states fails and it
has been an open problem for along time to construct wavelets
on the sphere. The breakthrough was the construction of
spherical wavelets on S? based on convolution-type integrals
by W. Freeden and co-workers [14]. An alternate successful
approach was made by J.-P. Antoine and P. Vandergheynst [1],
[2] by lifting up rotations and dilations on the sphere into the
Lorentz group. The aim of this paper is to demonstrate that
both approaches can be generalized to continuous diffusive
wavelets. Diffusive wavelets can be build not only on compact
groups and homogeneous spaces but also on stratified groups.
The most well-known example here is the Heisenberg group.

Classical wavelet theory is based on the group generated by
translations and dilations. The key idea of diffusive wavelets
is to generate a dilation from a diffusive semigroup and to
substitute translation by action of a compact group. A related
approach based on spectral calculus of the Laplacian on closed
manifolds was proposed by D. Geller and A. Mayeli [15] and
related work by 1. Pesenson and D. Geller [17], [18].

The construction of diffusive wavelets is based on
convolution-type operators. These ideas were used in [6]
to construct wavelets on the sphere S3. Discrete wavelet
transforms of that type were used by R. R. Coifman, M. Mag-
gioni and others [11], [10], where the heat evolution was
combined with an orthogonalization procedure to model a
multi-resolution analysis in L?(S3).

These ideas can be combined with other group structures
to get wavelets invariant under finite reflection groups [3]. A
similar construction is possible for the torus in [5].

An application material sciences and specifically to the crys-
tallographic Radon-transform [8], [7], [9] we need wavelets on
S$3, SO(3) and S? x S? [4].

This approach was generalized by a representation theory
based approach where the heat flow was replaced by a more
general approximate convolution identity in [13] and [12].

The aim of this paper is to give a general approach to
diffusive wavelets on compact groups, homogeneous spaces
and stratified groups which is based on the theory of Lie
groups. Several examples explain the construction of diffusive
wavelets for specific situations.

II. DIFFUSIVE WAVELETS
A. Preliminaries on compact Lie groups

Let ¢ be a compact Lie group. A unitary representation of
% is a continuous group homomorphism 7m: ¢ — U(d,) of 4
into the group of unitary matrices of a certain dimension d.
Such a representation is irreducible if 7(g)M = Mw(g) for
all g € 4 and some M € C% >4~ implies M = cId, where
Id is the identity matrix.

Theorem 1 (Peter-Weyl). Let 9 be the set of all equivalence
classes of irreducible representations of the compact Lie
group ¢, choose one unitary representation m.(g) from each
class, and let the dimension of the representation 7,(g) be
de, and its matrix elements be ©%, 1 < i,j < d,, and

Hq = span (7§ ) . Then

(e}
1)’

L2 (D) = ®uHr, =D Hn

TEY

and any function f € L*(9) has a unique decomposition into

ZZ%

with Fourier coefficents cf;.
The orthogonal projection L*(9) — H,, is given by

fa ZCU Z]:

where X, (g) = trace m,(g) is the character of the represen-
tation.

‘ZS * sza)

The Fourier coefficient f 7) can be calculated as

= [ s@
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and the inversion formula (the Fourier expansion) is then given
by
flg) =" dxtrace(r(g)f(m)).
=2

The Laplace-Beltrami operator Ag on ¢ is bi-invariant.
Therefore, all of its eigenspaces are also bi-invariant subspaces
of L?(¥). As H, are minimal bi-invariant subspaces, each
of them has to be an eigenspace of Ag with respect to an
eigenvalue —\2. Hence,

Agé =~ de\2trace (r(g)d(r))
red

and the solution to the heat equation
(at - Ag)u =0, U(O, ) = ¢7

is given as convolution with the heat kernel p;(g) as u(t, ) =
¢ * py, where

~ — )2 422
pr(m) = e =1 and py(g) = Zdﬂe A xx(g).
g

In particular ¢ * p; — ¢ for all ¢ € LP(¥4), 1 < p < 0.

B. Wavelets on compact groups

Definition 1 (Diffusive approximate identity). Let 54;_ C 9 be
cofinite. A family t — p; from C*(Ry; LY(9)) will be called
diffusive approximate identity with respect to %. if it satisfies
o |[pe(m)|| < C uniform in w € 9, and t € Ry;
o lim; g ﬁt(ﬂ') =1 forall m € ga_;
o limy oo Pe(m) =0 for all m € E!ZL;
o —Opi(m) is a positive matrix for all t € Ry and
limy_o pe(mw) =1 for all m € fé_‘_.

For f € L?(¥) the projection onto L2(¥) is
Fla,= D f*xr
TK'E(JZ,

Definition 2 (Diffusive wavelets on a compact Lie group). Let
pt be a diffusive approximate identity and «(p) > 0 a given
weight function.

A family ¢, € L(¥Y) = D.cy, Hr is called diffusive
wavelet family, if it satisfies the admissibility condition

wls, = [ dospalo)do

where 12’/)(9) =Yp(g71).

Applying Fourier transform to the admissibility condition
yields:

B = [ Gy male)
t
Differentiation with respect to ¢ results in
—0ipe(m) = o (m) iy (m)(p)-

If 1Z7T(7r) are the Fourier coefficients than a multiplication with
a unitary matrix 7),(7) does not change the last equality.

C. Wavelets based on the heat kernel

Let p; be the heat kernel ef¢at

that

on the group 4. We know

. ~heat _
g & =0

for all nontrivial representations of ¢. Since the character of
the trivial representation 7y is xr, = 1 the corresponding
invariant subspace in L?(%) is the space of constant functions
and hence the eigenvalue vanishes, which implies é/¢%* () =
Id and contradicts the definition of the diffusive approximate
identity. Therefore we choose

Gy = G\{mo}.

That means L3(%) contains all square integrable functions
with vanishing mean. The admissibility condition reads now
as

0y (m) = Nye™ e Id =y (m)d (m)alp).
Due to the freedom in choosing a unitary matrix n,(r) we get

P,(m) = ﬁxwe—%% Id

and the wavelet has the form

Vo= i D dedee Btrace (n,(m)(g).
TeG
Definition 3 (Wavelet transform). Let & be a compact group,
alp) > 0 a weight function on 4 and 1, € L3(¥) a
diffusive wavelet family. The wavelet transform W : L3(¥4) —
L*(Ry x 9, a(p)dp @ dg) is defined as

(7 )(p, 9) = (f *,)(9)

Theorem 2. The wavelet transform
W L3(9) — L*(Ry x 9, a(p) dp®@dg) is a unitary operator
and the wavelet transform is invertible on its range by

/R /g(Wf)(p, h),(h~tg) dha(p) dp
B /W(Wf)(p’ ) * 1y alp)dp = f(g),

—0
D. Wavelets on homogeneous spaces
We have two options to construct wavelets on homogeneous
spaces:
The naive way: We apply the wavelet transform to the lifted
function f(g) = f(g - xo) with base-point g € X" = ¥/ H°
for some f € L?(2"). This defines a function on R, x ¢ via

e L F(h)d (b g) dh
- L F(h - 20),(h 1 g) dh

But we would prefer to have a transform living on Ry x 2~
instead of Ry x ¢.
For that we introduce the following zonal product

fov(z) = [g (g~ zo)lg - x)dg € LM(@).
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Definition 4. Let 2" = &/ be a homogeneous space and
pt be a diffusive approximate identity and «(p) > 0 be a given
weight function. A family v, € L*(Z) is called a diffusive
wavelet family if the admissibility condition

b @, = [ v ds

is satisfied.
We associate to this family the wavelet transform

W ) (pr9) = / fa

Theorem 3. The wavelet transform Wy LX) —
L*(Ry x 9, a(p) dp ® dg) is invertible on its range by

fe ¢p )dx.

oo

f=1[ Fafp)xd,alp)dp forall fe Li(X).

—0
E. The non-compact case

We only mention the key points for this case. The spectrum
of the Laplacian of non-compact groups becomes continuous.
Consequently, the expansion in eigenfunctions of the Lapla-
cian becomes a direct integral

D
(9) = / FOm(9) du(N).

The critical question here is to have an appropriate Fourier
transform. That means, does there exist a measure dju on ¢,
such that the integral

[ Fma du(V)
G

is well-defined for some function space on ¢. If such measure
exists it is called Plancherel measure. In this case the con-
struction of diffusive wavelets works similar to the compact
case. In general a Plancherel measure does not exist for locally
compact groups. But since the Plancherel measure exists for
nilpotent Lie groups, one can extend diffusive wavelets to
nilpotent Lie groups.

where f()\) ::/ m(9) f(g) dg

9

IIT. WAVELET PACKETS

Definition 5. Let {p;, j € Z} be a strictly decreasing
sequence of real numbers such that

hm n pj = 0 and lim p; = oo.
—) oo
Let {¥,, p > 0} be a family of diffusive wavelets. A wavelet

packet is defined by
1
2
p)7a(p) dp> :

(=N
Sy
2

Il

7N

~—

T2
=8

and in spatial domain

U= dehs

re@

(/ d,o> trace (5(m)7(g))-

The wavelet transform is now given by
(ZTF)G.9) = (f = ¥7)(9).
Theorem 4. The wavelet transform W' is an isometry
L*(9) — L*(Z x 9)*.

Theorem 5. The wavelet transform W' is invertible on its
range by

F9) =Y (#P NG * T ()9

JEz
A common strategy is to build up a multiresolution analysis

corresponding to W',

IV. EXAMPLES

1) The torus T™: Let T™ denote the n-dimensional torus
which can be identified with

T" = R"/(2rZ)".

We will identify n-fold periodic functions on R™ with their
projection on T™. The corresponding projection will be called
periodization and is defined by

Z fz+w).

we22nL"

In particular, the periodization of the heat kernel on R™ give
the heat kernel on T". We have
n 1 z||?
e?,eat,R ( ) U2

= 4t
YT oty ©

Let m € Z". For f € L*(T") we have

=Y fim

mezZm™

/ f(x)e =% g,
[0,27]™

The Fourier coefficients of the heat kernel ef“**™"

given explicitly
»/[10271']"
—i305_ MyT; dr = LB_ZJ 1 m; t

1 / 1 euzwt\ . :
C(2m)™ g 2(mt) 27m

Let {¢,} be a subfamily of L?(T™). the wavelet we are
looking for has the Fourier series expansion

. n
=1 I3
)e' =i )

N 1
f(m):W

can be

~heat,T" _ 1
! (2m)™

heat,R" —i", myx;
et B (g 4 w)e Tt Xi= ma dy

we2mL"

n
2 722’ 1M peZZJ 1T

Yp(x) =

mEZ" j=1
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2) The unit sphere S™: The unit sphere is a homogeneous
space S™ = SO(n + 1)/SO(n). An orthonormal system
in L?(S™) is given by the spherical harmonics {Y}, k =

0,1,...,¢ = di(n)}, where di(n) = (2k + n —
1)% We denote by C’,;\ the Gegenbauer polynomials
of order A = "7’1 The eigenvalues of the Laplace-Beltrami

operator on S™ are —\? = —k(k+n —2) and the heat kernel
is given by
YA Ci (2o - )

eheat,S" (JJ
' Cr(1)

)zz:dk(ne
2k +n —
_Z n—1

where 1z is base point. Let a(p) > 0 be a weight function on
S™. Then (radial) diffusive wavelets are given by

k(k+n—2)tcli\ (1‘0 . l‘),

2]{5 +n — 1))\ 2
Uy(z) = Z n—1 e MPRCR (o - ),
where \2 = (k + n — 2). This construction is based on the

GauB3-Weierstrall kernel. A similar construction can be done
with the Abel-Poisson kernel, where )\% =k.

3) The compact group SO(3): For SO(3) all irreducible
representations are unitary equivalent to one of the irreducible
components of the quasi-regular representation in L?(S?). In
L?(S?) the translation invariant subspaces are spanned by the
spherical harmonics of the same degree of homogenity. We
have d(2) = 2k + 1 and the eigenvalues of the Laplace-
Beltrami operator are —\? = —k(k + 1). The eigenfunctions
are the so-called Wigner polynomials. Hence the heat kernel
on SO(3) is

1 o0
650(3) (9) = I Z(Qk +1)e MOy, (Sin (%g))) )
k=0
where v(g) denotes the angle of g [16]

~(g) = arccos (%) .
By our construction a family of wavelets on SO(3) corre-
sponding to the heat kernel is given by

V,(9) =
\/741# Z(Qk +1)\Vk(k+1e WQH)”C%,C (sin (@)) .

4) The Heisenberg group: The construction of diffusive
wavelets is not restricted to compact groups and homogeneous
spaces. As long as we have some Plancharel formula we can
construct diffusive wavelets. Therefore we can construct diffu-
sive wavelets on the Heisenberg group. Since the Heisenberg
group is noncompact we cannot use the Peter-Weyl theorem.
But fortunately similar results can be obtained from the Stone-
von-Neumann theorem. Due to the existence of a Plancherel
measure the Fourier transform can be developed in a similar
way, where the sum over irreducible representations becomes
an integral since the spectrum of the Laplacian is continuous.

While the Laplacian involves a complete basis of the Lie
algebra, the sub-Laplacian involves only those operators which
corresponds to vector fields belonging to the sub-Riemannian
structure. Therefore we consider the heat equation

(Asub - ar)u((xa Y, t)a T) =0
with fundamental solution
pr(x,y,t) _ /(271‘)"/2 Z Z e—((2|a\+n)\>\|)r¢2(x’y,t) dﬂ()‘)a
k=0 |a|=k

where ¢ (z,y,t) are the radial-symmetric eigenfunctions of
Agyp. For the three dimensional Heisenberg group H'! we
obtain the diffusive wavelets

1 1 sl +iyl?
Vy(r,yt)=—> (= L+ 2
p(2,y,1) kz:% k! (it — (2k +1)5) < +it—(2k+1)§>
. k
G S SO a7 ) P
K (—it— (2k+1)8) it—(2k+1)%
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