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Fig. 1. Time-frequency partition with varying time-frequency bands

Abstract—We present a construction of frames adapted to
a given time-frequency cover and study certain computational
aspects of it. These frames are based on a family of orthogonal
projections that can be used to localize signals in the time-
frequency plane. We compare the effect of the corresponding
orthogonal projections to the traditional time-frequency masking.

I. INTRODUCTION

When representing a signal in a time-frequency dictionary,
the atoms are usually chosen as time-frequency shifts of a
window along a lattice (Gabor frame). The choice of the
lattice together with the characteristics (shape, width) of the
basic window or family of windows determines the ability
of the representation to localize certain signal components
and, furthermore, the possibility to separate them. Various
approaches have been taken to circumvent the restrictions
possibly imposed by a rigid application of lattice structure
(reassignment, adaptive frames) [1], [2], [6], [3], [17], giving
time-frequency partitions consisting of frequency (resp. time)
strips of varying widths (see figure 1)

In [10] we have presented a construction of frames whose
spectrogram follows a prescribed time-frequency pattern. This
pattern may be quite irregular and in particular does not need
to be a Cartesian product of a time and a frequency partition
(see figure 2).

Fig. 2. Fully irregular time-frequency partition

This construction is achieved by selecting from each tile of
the cover an orthonormal set of functions that maximizes its
joint spectrogram within the tile. These functions are eigen-
functions of time-frequency localization operators (see below),
whose concentration is no more restricted to be located at lat-
tice points. By definition, the eigenfunctions corresponding to
high eigenvalues of the localization operators, are maximally
localized within a (weighted) subfamily of the time-frequency
shifted atoms; thus, they provide potentially better localization
in a certain time-frequency region than the time-frequency
atoms themselves.

Since the frames introduced in [10] are constructed by
choosing a finite number of eigenfunctions from each lo-
calization operator corresponding to a partition of the time-
frequency plane, they produce a resolution of the identity
by orthogonal projections. This means that replacing the
usual time-frequency masking operators by certain orthogonal
projections does not lead to loss of information, provided that
the projection is chosen judiciously.

In this article we consider certain computational aspects of
the construction of frames adapted to time-frequency covers
and compare the effect of the corresponding orthogonal pro-
jections to the traditional time-frequency masking.
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II. TIME-FREQUENCY LOCALIZATION

A. Localization operators

The short-time Fourier transform (STFT) of a distribution
f ∈ S ′(Rd) is a function defined on Rd×Rd defined, by means
of an adequate smooth and fast-decaying window function ϕ ∈
S(Rd), as

Vϕf(z) =

∫
Rd
f(t)ϕ(t− x)e−2πiξtdt, z = (x, ξ) ∈ Rd×Rd.

The number Vϕf(x, ξ) represents the influence of the fre-
quency ξ near x. The distribution f can be re-synthesized
from its time-frequency content by,

f(t) =

∫
Rd×Rd

Vϕf(x, ξ)ϕ(t− x)e2πiξtdxdξ. (1)

Given a compact set Ω ⊆ R2d in the time-frequency plane, the
time-frequency localization operator LΩ is defined by masking
the coefficients in (1), cf. [5], i.e.

LΩf(t) =

∫
Ω

Vϕf(x, ξ)ϕ(t− x)e2πiξtdxdξ. (2)

LΩ is self-adjoint and trace-class, so we can consider its
spectral decomposition

LΩf =

∞∑
k=1

λΩ
k 〈f, φΩ

k 〉φΩ
k .

The first eigenfunction, φΩ
1 , is optimally concentrated inside

Ω in the following sense,∫
Ω

∣∣VϕφΩ
1 (z)

∣∣2 dz = max
‖f‖2=1

∫
Ω

|Vϕf(z)|2 dz.

More generally, the first N eigenfunctions of HΩ form an
orthonormal set in L2(Rd) that maximizes the quantity

N∑
j=1

∫
Ω

|VϕφΩ
j (z)|2 dz,

among all orthonormal sets of N functions in L2(Rd). In this
sense, their time-frequency profile is optimally adapted to Ω.

B. Time-Frequency areas of interest

The shape of the time-frequency areas one may be interested
to localize in, will usually depend on the application and the
characteristics of the underlying class of signals. Typically,
one may consider rectangles of different eccentricities in order
to be able to focus on signal components showing a more
transient or more harmonic characteristic. Examples are de-
picted in Figure 3. In some applications, one may be interested
in more exotic shapes, such as triangular, cf. Figure 4, for
example to account for the spectral roll-off in instrumental
sounds, or chirped components, cf. Figure 5, which are also
omnipresent in both speech and music signals.

Fig. 3. Four different rectangular masks in time-frequency domain and the
first eigenfunctions of the corresponding localization operators. Middle plots
show the absolute value squared of the STFT and right plots show the real
part.

Fig. 4. Triangular-shaped mask, absolute value squared of the STFT of
projection of random noise onto most localized resulting eigenfunctions, real
part of most concentrated eigenfunction.

III. FRAMES OF EIGENFUNCTIONS

We now present the main result on the construction of
frames adapted to a cover and then explore certain compu-
tational aspects of it. The proof of the following theorem can
be found in [10], together with an extended discussion on its
quantitative aspects (see also [8], [15], [9], [16]).

Theorem 1: Let {Ωγ : γ ∈ Γ} be a cover of R2d such that

Br(γ) ⊆ Ωγ ⊆ BR(γ), with Γ a lattice and R ≥ r > 0.

Then, there exists a constant C > 0 such that for every choice
of Nγ , C |Ωγ | ≤ Nγ ≤ N <∞, the family of functions{

φ
Ωγ
k : γ ∈ Γ, 1 ≤ k ≤ Nγ

}
is a frame of L2(Rd).

A. Computing the eigenfunctions in each tile

In practice we work with a discrete realization of LΩ given
by

Hm,Λf =
∑
λ∈Λ

m(λ)〈f, π(λ)g〉π(λ)g, (3)

where
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Fig. 5. Chirp-shaped mask, absolute value squared of the STFT of projection
of random noise onto most localized resulting eigenfunctions, real part of the
projection.

• Λ ⊆ R2d is a lattice,
• {π(λ)g = e2πiλ2·g(· −λ1) : λ = (λ1, λ2) ∈ Λ} is a tight

Gabor frame of L2(Rd).
• m = (mλ)λ∈Λ is a bounded sequence of complex

numbers.
The operator Hm,Λ is called a Gabor multiplier with mask m.
If we let m(λ) := 1, if λ ∈ Ω and 0 otherwise, then Hm,Λ is
a discretization of the operator LΩ in (2).

Given an operator Hm,Λ defined in (3), mapping L2(Rd)
into itself, we denote K = # supp(m), assume that K is
finite, and write Hm as a composition of the operator G√m :

f 7→ [
√
m(λ)〈f, π(λ)g〉]λ∈Λ∩supp(m), mapping L2(Rd) into

CK and its adjoint G∗√
m

.
Both G√m and G∗√

m
are finite-rank operators and can be

written in their singular value decomposition:

G√m =

K∑
j=1

sj〈·, vj〉L2uj , (4)

G∗√m =

K∑
j=1

sj〈·, uj〉CKvj . (5)

Then, applying G∗√
m

to uk yields G∗√
m
· uk = sk · vk and

thus the eigenfunctions vj of Hm,Λ may be obtained from the
eigenfunctions of the Gramian operator Γm := G√m · G∗√m
by

vj =
1

sj
·G∗√m · uj , j = 1, . . . ,K. (6)

In typical applications, where Hm,Λ is a matrix whose size
depends on the signal length, the size of the corresponding
Gramian matrix is K×K with K being the size of the support
of the mask (or, in the case of 0/1-masks, the support of Ω)
which is usually small enough for the computation of the spec-
tral decomposition to be a feasible task. Furthermore, in (6)
only the eigenfunctions corresponding to relevant eigenvalues
s2
j need to be computed.

B. Computing the whole frame

Section III-A deals with the computation of the relevant
eigenfunctions for each individual tile of the cover. To compute

Fig. 6. Evaluation of the procedure to obtain frames adapted to a
given time-frequency partition.

the whole frame we use the following observation based on
the so-called covariance of the Short-Time Fourier transform.

Lemma 1: If Ω′ = Ω + z0, for some z0 ∈ R2d. Then the
eigenfunctions of LΩ and LΩ′ are related by

φΩ′

k = π(z0)φΩ
k , k ≥ 1.

where π(x,w)f(t) = e2πiwtf(t − x). Hence, if the cover
{Ωγ : γ ∈ Γ} in Theorem 1 consists of translates of N basic
tiles Ω1, . . . ,ΩN ,

Ωγ = Ωkγ + zγ , 1 ≤ kγ ≤ N, zγ ∈ R2d,

then only N sets of eigenfunctions need to be computed.

C. The number of eigenfunctions and the resulting frame
quality

In order to test the performance of the procedure described
in Theorem 1 and Lemma 1 for the generation of a new frame,
we generated random partitions of the time-frequency plane,
consisting of three different rectangular shapes, thus in the
spirit of the example shown in Figure 2. Then, the eigenvalues
of the resulting spectral decomposition were thresholded by 6
different values between 0.51 and 0.41 and the corresponding
eigenfunctions were used to generate time-frequency frames
with redundancies between 1.15 and 7. The condition numbers
of the resulting frames are shown in Figure 6, as well as
the average error, when the corresponding frame operators are
applied to (1000 realizations of) random noise. Interestingly,
while the condition number of the resulting frame improves for
increased redundancy, the optimal approximation of the iden-
tity seems to be obtained for a threshold very close to 0.5. This
agrees with the observation that the number of eigenvalues
above 0.5 is given by the volume of the localization area [14],
[11], [7], [12]. This effect can be circumvented by renormal-
izing the eigenfunctions to its corresponding eigenvalue (see
[10]).
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IV. FRAMES OF EIGENSPACES

Theorem 1 can be interpreted in the following way. For
each γ ∈ Γ let Vγ be the subspace spanned by the first Nγ
eigenfunction {φΩ

1 , . . . , φ
Ω
Nγ
} and let Pγ be the corresponding

orthogonal projection. Then,

‖f‖22 ≈
∑
γ∈Γ

‖Pγf‖22, f ∈ L2(Rd).

This means that {Vγ : γ ∈ Γ} is a fusion frame in the sense
of [4]. In certain situations, using the projection Pγ may be
preferable to masking the coefficients with a multiplier like
the one in (3).

A. Cutting with reduced spilling

Denoising by time-frequency masking is a ubiquitous
method in signal restoration, cf. [18]. However, in dependence
on the time-frequency concentration of the window used to
obtain the time-frequency representation used, this method
leads to significant spilling of energy outside the region of
relevant signal components. Applying projection onto signif-
icant eigenfunctions of a time-frequency multiplier instead
of applying the multiplier itself, can ameliorate this bias.
An example for this is shown in Figure 7. Here, a Hann
window h was chosen as a reference signal, while the analysis
window is still a Gaussian window. The signal h was disturbed
by additive white noise, with a signal to noise ratio (SNR)
of 3.5dB to obtain the noisy signal hn. Then, the original
signal was recovered by either applying a Gabor multiplier
derived from a 0/1-mask on the estimated region, with an
underlying Gabor frame of redundancy 16, and, on the other
hand, the projection onto the eigenfunctions corresponding to
eigenvalues close to 1. The average achieved SNR (over a 1000
noise-realizations) was 12.5dB for the projection approach
and 11.3dB for the plain Gabor multiplier.

V. CONCLUSION AND PERSPECTIVES

In this article we have presented a new method to obtain
frames adapted to a given partition of the time-frequency plane
and addressed certain computational aspects of it. We also
showed that using projections onto the space spanned by the
first eigenfunctions corresponding to the Gabor multiplier of a
certain localization region can yield better results than apply-
ing the Gabor multiplier itself. These are preliminary results
that must be evaluated more extensively and in particular given
a proof of concept by means of application to real-life data.
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