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Abstract—Localisation microscopy (PALM/ STORM) involves
sampling sparse subsets of fluorescently labelled molecules, so
that the density of bright fluorophores in a single frame is
low enough to allow single molecule sub-diffraction limited
localisation. The sampling rate, i.e. the density of bright flu-
orophores per unit time, is key to both the temporal and
spatial resolution of localization microscopy. Here we present
DAOSTORM, an image analysis algorithm allowing increased
sampling rate, and AutoLase, an algorithm for measurement and
closed-loop feedback control of sampling rate.

I. INTRODUCTION

Localisation microscopy (PALM [1]/ STORM [2], etc.)
involves two key insights. Firstly, that the positions of well
separated point sources can be localized to sub-diffraction
limited accuracy. Secondly, that fluorescent molecules can be
made to blink in a controlled fashion under appropriate exper-
imental conditions. By adjusting the blinking of a fluorophore
such that it spends most of its time in a dark inactive state,
and only a tiny fraction of its time in a bright, photon-emitting
state, a single image of even a densely-labelled structure
will show only a few active, well separated point sources
within the image. Repeated imaging of the sample records the
position of different subsets of fluorophores; by combining the
many subsets of localizations obtained from multiple images,
a single super-resolved image of all fluorophores within the
sample may be constructed.

One of the most important parameters in localization mi-
croscopy is the sampling rate, i.e. the density of bright
fluorophores per unit time. If the sampling rate is too high,
the bright fluorophores will no longer be well separated, and
the spatial resolution of the image will be degraded. If the
sampling rate is too low, an unnecessarily large number of raw
images will be required to reconstruct a single super-resolved
image, reducing the temporal resolution of the measurement.
Sampling rate is thus key to both the temporal and spatial
resolution of localization microscopy.

Here, we focus on two key sampling problems in local-
ization microscopy: how to increase the maximal sampling
rate, and how to maintain optimal sampling rate during data
acquisition.

II. INCREASED SAMPLING RATE BY HIGH DENSITY
LOCALIZATION

Until recently, algorithms for localization microscopy took
the following simplistic approach. All bright fluorophores
within a sample are assumed to be well separated (separation
much greater than FWHM of the point spread function, PSF).
Then bright spots in the image are identified and fitted with
a single model PSF (usually a 2D Gaussian). However, if
two spots overlap even slightly, this approach fails due to the
inadequacy of the fitting model, producing a single localization
which is in-between the two overlapping spots. This approach
only works when the imaging density (the density of bright
fluorophores in a single image) is very low, severely limiting
the sampling rate of the technique.

We developed DAOSTORM [3], which is capable of single
molecule localization at much higher imaging density. This
is achieved by simultaneously fitting multiple model PSFs to
bright regions of the image, instead of just one model PSF.
This simple improvement over previous algorithms allows
localization at much higher imaging density, increasing the
sampling rate and temporal resolution of the technique.

We compared DAOSTORM to two common “sparse” local-
ization algorithms. “Sparse Algorithm 1” (SA1) [2] fits candi-
date molecules with a single Gaussian PSF of variable size and
ellipticity. Localizations arising from overlapping molecules
are rejected if the fitted PSF appears too elliptical (“shape-
based filtering”), or too large/ small (“size-based filtering”).
“Sparse Algorithm 2” (SA2) [4] fits candidate molecules with
a single Gaussian PSF of fixed shape and size, without shape/
size-based filtering.

We first investigated the qualitative performance of each
algorithm for images of Alexa647-labelled microtubules in
fixed COS-7 cells in dSTORM photoswitching conditions [4].
The results of each algorithm on single raw images, illustrates
the characteristic performance of each algorithm (Fig. 1a-c).
SA1 only localized isolated molecules, which were fitted with
small localization error. SA2 localized a larger fraction of
the molecules, but showed large localization errors for over-
lapping molecules. DAOSTORM outperformed both sparse
algorithms, successfully identifying almost all molecules with
small localization error.

We quantified the performance of each algorithm by analyz-
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Fig. 1. Comparison of DAOSTORM to existing super resolution localization algorithms. A. A single image of fluorescently labeled
microtubules was analyzed using SA1, SA2 and DAOSTORM. Crosses represent localizations for each algorithm. B, C. Recall (B) and
localization error (C) of the algorithms used in a measured for simulated images of randomly distributed surface-immobilized molecules.
Error bars, s.d. (n = 10). D. Super-resolved microtubule images from a 2000-frame data series. E. Line plots of cross-section indicated by
dashed lines in D. Scale bars, 1 µm. Reproduced from [3]

ing simulations of randomly distributed surface-immobilized
fluorophores. We compared observed localizations to simu-
lated positions, calculating the recall and localization error at
different imaging densities. The recall is the percentage of
simulated fluorophores successfully detected. The localization
error is the root-mean-square distance between a localization
and the simulated position.

DAOSTORM substantially outperformed the sparse algo-
rithms in simulations at high signal-to-noise ratio (SNR)
typical of STORM data (Fig. 1d). SA2 gave large localization
errors even at low imaging density. In contrast, DAOSTORM
gave small localization errors similar to the other “precise”
algorithm, SA1, together with a 6-fold improvement in recall
performance.

Next, we recorded dSTORM images of the microtubule
network described above, and used each algorithm to ob-
tain super-resolved images (Fig. 1e-g). SA1 showed low
recall, producing poorly sampled STORM images, while SA2
achieved higher recall, but with large localization error, leading
to poorly-defined, noisy images. DAOSTORM showed high re-
call and small localization error, producing well-defined, low-
noise images. A line-plot across three parallel microtubules
demonstrates the performance difference among the algorithms
(Fig. 1h): DAOSTORM resolved all three microtubules, SA2
detected two, and SA1 detected only one.

These results demonstrate the ability of DAOSTORM to in-
crease the maximum sampling rate in localization microscopy,
and thus increase temporal resolution. DAOSTORM can also
increase quality of super-resolved images of biological sam-
ples in situations where control of imaging density is poor.

III. MEASUREMENT AND CLOSED-LOOP FEEDBACK
CONTROL OF SAMPLING RATE

During data acquisition, a careful balance in sampling rate
is required: if sampling rate is too high, spatial resolution is
reduced; if sampling rate is too low, temporal resolution is
reduced. In both PALM and STORM, the sampling rate is
usually sensitive to the illumination intensity of a “photoac-
tivation” UV laser [1], [2]. The sampling rate can thus be
adjusted to its optimal level by changing the photoactivation
laser power (hereafter, UV power). However, the UV power re-
quired to maintain optimal sampling rate will vary significantly
during a measurement, due to irreversible photobleaching of
an increasing fraction of the fluorophores as the experiment
progresses. It will also vary significantly between different
fields of view within a sample, e.g. due to variations in the
morphology and labelling density of the labelled structure.

Sampling rate is usually controlled by continuous manual
assessment of the density of molecules in any single frame,
and manual adjustment of UV power. This is tedious, and
most importantly, is incompatible with automation. To resolve
this, we present AutoLase, an algorithm for measurement and
closed-loop feedback control of sampling rate.

A conceptually straightforwards approach [5] is to perform
real-time localization analysis as the data is acquired and
optimise the UV power based on the observed number of local-
izations. However, this approach has two serious limitations.
Firstly, real-time localization is computationally intensive; this
approach will therefore be difficult to implement for high
frame-rate imaging and/ or for large field of view cameras
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(e.g. sCMOS cameras). Secondly, and most importantly, this
approach will fail at high imaging density, since multiple
overlapping PSFs will be erroneously grouped together.

The design requirements for AutoLase are thus low com-
putational burden and good performance at high imaging
density. Instead of trying to optimise sampling rate using only
the information from an individual frame, the problem can
be significantly simplified by including temporal information
from multiple frames. The amount of time that individual
fluorophores remain in a bright, photon emitting state is
Poisson distributed about a mean lifetime τon. Therefore, any
region of a sample which remains continuously bright for
significantly longer than τon very likely contains multiple
bright fluorophores instead of just one. We devised an image-
based estimator of τon, by estimating the amount of time that
each pixel in an image has been continuously bright. This
allows us to estimate the number of bright molecules, without
the need for real-time localization. Since τon will increase with
the number of active bright molecules, this estimator will be
robust at high imaging density.

For each frame k, and for each pixel i, we define the
estimated on-time, τi,k,

τi,0 = 0,

τi,k = (τi,k−1 + ∆t) Mth(Ii),

where ∆t is the interval between each frame, Ii is the intensity
at the current pixel, th is an intensity threshold, and Mth(I)
is the binary threshold operator,

Mth(I) =

{
1 if I ≥ th,

0 otherwise.

Each time the pixel intensity Ii falls below th, τi,k is set
to 0. If Ii is above threshold, τi,k is equal to the duration for
which that pixel has been above threshold at frame k. τ is
thus a measure of how long each pixel has been continuously
bright.

We implemented closed-loop feedback control of τ . The
maximum value of τ at each frame K is smoothed via a
running mean

τmax =
1

N

K∑
K−N+1

max
i

τi,k,

and compared to a target value T . If the observed value of τ
is above or below T by more than x %, then the UV power
is reduced or increased, respectively. We calculated the image
maximum of τ rather than an average, since we reasoned that
the key criterion is that no region of the image contains too
many active molecules.

Closed-loop feedback control was implemented on a home-
built microscope, controlled using the open-source instrument
control software, Micromanager [6]. We wrote a plugin to
Micromanager, called AutoLase, to perform the feedback con-
trol, which we will shortly release as open-source software.
Because Micromanager is open-source and works for a large

variety of instruments, and because AutoLase is not compu-
tationally intensive and does not require real time localiza-
tion analysis, it should be straightforward for researchers to
implement feedback control on their own systems using our
software.

The performance of the AutoLase algorithm in estimating
τon is shown in Fig. 2. Live C. crescentus bacteria expressing
FtsZ-Dendra2 [7] were imaged at a frame rate of 100 Hz
using AutoLase to control the imaging density. An exemplar
subset of frames (Fig. 2A) shows the blinking behaviour of the
labelled molecules. Most molecules remain on for less than
100 ms, however, two molecules (top middle and top right
of images) remain on for greater than 200 ms. The on-time
estimator τ successfully captures this behaviour (Fig. 2B),
showing only two regions active for greater than 200 ms,
consistent with the visual interpretation of the raw data.

AutoLase feedback control is shown in Fig. 2C-D. With
feedback control (Fig. 2C), the laser power was initially 0 %,
and AutoLase was turned on at t=0 s. The raw τmax data
is quite noisy (grey line), but clear trends are visible in the
smoothed data (black line). Before t=0 s, most molecules
are in their dark state, with only occasional spikes in τmax

due to autofluorescence or photoactivation by the imaging
laser. When AutoLase is turned on at t=0 s, the laser power
(blue line) is rapidly increased and stabilises at ∼10 % for
the first 50 s of imaging, after which point it increases in
approximately exponential form to the maximum power. This
produces observed on-times stable around the target value of
400 ms for nearly 100 s, after which τmax gradually decreases
because very few unbleached molecules remain.

Without feedback control (Fig. 2D), a new field of view
(FOV) was chosen, and the laser power was set to 10 %
of maximum power at t=0 s, since this was observed to be
the stable initial value for the previous FOV. Interestingly,
this power level produces an observed τmax well above the
target value of 400 ms for the first 50 s of imaging. This is
presumably due to variation in density of labelled molecules
between different FOVs. Between 50–100 s, τmax is near the
target value, after which it decreases rapidly.

These results show that AutoLase can rapidly and accurately
optimise τmax to a given target value, and that this value can
be maintained for extended periods of time. By contrast, set-
ting the power to a constant value without feedback control is
sensitive to variations in density of labelled molecules, which
occurs even between adjacent FOVs (e.g. due to variation
in morphology of the labelled structure), and significantly
reduces the period for which τmax is close to the target value.
In practice, we have found that AutoLase gives performance at
least as good as manual optimisation of the UV power, while
being compatible with automated imaging.

IV. CONCLUSIONS

Sampling rate is a key parameter for localization mi-
croscopy. Our algorithm, DAOSTORM, is capable of
analysing localization microscopy data even at high imaging
density, where many fluorescent molecules are simultaneously
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Fig. 2. Measurement and control of molecule on-time using AutoLase. A. Exemplar subset of images of live C. crescentus expressing
FtsZ-Dendra2, under photoswithing conditions. B. Estimated on-time for each pixel, for frame corresponding to t= 0 ms in A. C-D. Observed
maximum single-pixel on-time (τmax) , with (C) and without (D) feedback control. Raw data, gray line; smoothed data, black line; laser
power, blue line. For the case with feedback control turned off (D), UV power was set to 10 % at t= 0 s.

active. In high signal-to-noise conditions, a sixfold increase in
maximum imaging density is obtained. This allows increased
sampling rate with minimal loss of spatial resolution. In
practice this allows super-resolved images to be constructed
from fewer frames of raw data, significantly increasing the
temporal resolution of the technique. These improvements are
particularly useful for challenging applications such as live-
cell super-resolution imaging [8].

We also presented AutoLase, an algorithm for measure-
ment and closed-loop feedback control of sampling rate. Our
algorithm is computationally non-intensive and is designed
to give good performance even at high imaging density. By
allowing automatic optimisation of photoactivation laser inten-
sity, AutoLase facilitates automated localization microscopy
measurements.
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