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Abstract—Here, we introduce a notion of strong fractional
derivative and we study the connection with the pointwise
fractional derivative, which is defined by means of Hadamard-
type integrals. The main result is a fractional version of the
fundamental theorem of integral and differential calculus in
Mellin frame. Finally there follow the first of several theorems
in the sampling area, the highlight being the reproducing kernel
theorem as well as its approximate version for non-bandlimited
functions in the Mellin sense, both being new.

I. INTRODUCTION

This article is the continuation of the previous one devoted
to the study of Mellin fractional integrals. Here we apply
the results concerning the Hadamard type integrals in order
to define an appropriate notion of the associated pointwise
fractional derivative. Moreover we will introduce a notion of
a strong fractional derivative in spaces Xc, as an extension to
the Mellin setting of the notion of classical strong derivatives
in Lp−spaces (see [6]). The pointwise fractional derivative of
order α > 0, is defined by the Hadamard integrals formally
as follows:

(Dα
0+,cf)(x) = x−cδmxc(Jm−α0+,c f)(x),

where m = [α] + 1 and δ := (x d
dx ). The above definition,

introduced in [9, Part I], originates from the theory of the
classical Mellin differential operator, studied in [6, Part I].
The main result here is an equivalence theorem which strictly
connects the two notions of fractional derivatives and the
Hadamard integrals. As far as we are aware this kind of equiv-
alence was never stated explicitily in the setting of Fourier
transform theory. This is also related to the fundamental
theorem of integral and differential calculus in the fractional
Mellin setting. For usual Mellin derivatives, this was described
in [6, Part I], where, in particular, the representation of the
Mellin derivatives in terms of the Stirling numbers of the
second kind is discussed in depth. Finally there follow the
first of several theorems in the sampling area.

One of the new and important applications regarding the
exponential sampling is an error estimate giving the fast rate
of approximation depending on the order of the fractional
derivative (see Corollary 2 below).

II. THE STRONG AND POINTWISE MELLIN FRACTIONAL
DIFFERENTIAL OPERATORS

We recall that Xc denotes the space of all the measurable
functions f : IR+ → CC such that f(·)(·)c−1 ∈ L1(IR+). The
Mellin transform of a function f ∈ Xc is defined by

M [f ](s) ≡ [f ]∧M (s) =

∫ ∞
0

us−1f(u)du

where s = c + it, t ∈ IR, and the Mellin translation operator
τ ch, for h ∈ IR+, c ∈ IR, f : IR+ → CC, by

(τ chf)(x) := hcf(hx) (x ∈ IR+).

Setting τh := τ0h , then (τ chf)(x) = hc(τhf)(x), ‖τ chf‖Xc =
‖f‖Xc . The Mellin fractional difference of f ∈ Xc of order
α > 0, defined by

∆α,c
h f(x) := (τ ch − I)αf(x) =

∞∑
j=0

(
α
j

)
(−1)α−jτ chjf(x).

for h > 0, I being the identity operator over the space of all
measurable functions on IR+, and(

α
j

)
=
α(α− 1) · · · (α− j + 1)

j!
,

has the following properties
Proposition 1: For f ∈ Xc the difference ∆α,c

h f(x) exists
a.e. for h > 0, with

i) ‖∆α,c
h f‖Xc ≤ ‖f‖Xc

∑∞
j=0

∣∣∣∣ ( α
j

) ∣∣∣∣
ii) M [∆α,c

h f ](c+ it) = (h−it − 1)αM [f ](c+ it).

Proof. As to (ii) it follows by taking the Mellin transforms on
the left, thus

∞∑
j=0

(
α
j

)
(−1)α−jh−itjM [f ](c+ it).

For spaces X[a,b], we have the following Proposition.
Proposition 2: Let f ∈ X[a,b], and let c ∈]a, b[.

(i) If 0 < h ≤ 1, then ∆α,c
h f ∈ X[a,c], and for every

ν ∈ [a, c]

‖∆α,c
h f‖Xν ≤ ‖f‖Xν

∞∑
j=0

∣∣∣∣( α
j

)∣∣∣∣h(c−ν)j .
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Moreover for t ∈ IR,

M [∆α,c
h f ](ν + it) = (hc−ν−it − 1)αM [f ](ν + it).

(ii) If h ≥ 1, then ∆α,c
h f ∈ X[c,b], and for every µ ∈ [c, b]

‖∆α,c
h f‖Xµ ≤ ‖f‖Xµ

∞∑
j=0

∣∣∣∣( α
j

)∣∣∣∣h(c−µ)j .
Moreover for t ∈ IR,

M [∆α,c
h f ](µ+ it) = (hc−µ−it − 1)αM [f ](µ+ it).

Definition. If for f ∈ Xc there exists g ∈ Xc such that

lim
h→1

∥∥∥∥∆α,c
h f(x)

(h− 1)α
− g(x)

∥∥∥∥
Xc

= 0

then g is called the strong fractional derivative of f of order
α and it is denoted by g(x) = s-Θα

c f(x), and

Wα
Xc := {f ∈ Xc : s-Θα

c f exists and s-Θα
c f ∈ Xc},

with W 0
Xc

= Xc, is the Mellin Sobolev space. Analogously
we define the spaces Wα

X[a,b]
,Wα

X]a,b[
.

Now to our several basic theorems of the two-parts paper.

Theorem 1: (i) If f ∈Wα
Xc
, then for s = c+ it, t ∈ IR,

M [s-Θα
c f ](s) = (−it)αM [f ](s).

(ii) If f ∈Wα
X[a,b]

, then for every ν, c ∈ [a, b],

M [s-Θα
c f ](ν+ it) = (c−ν− it)αM [f ](ν+ it), t ∈ IR.

Proof. As to (i), it can be shown in view of

lim
h→1

(
h−it − 1

h− 1

)α
= (−it)α,

that
lim
h→1

∣∣∣∣(−it)α[f ]∧M (s)− [s-Θα
c f ]∧M (s)

∣∣∣∣ = 0.

The pointwise fractional derivative of order α, associated with
the integral Jα0+,cf , c ∈ IR, and f ∈ DomJm−α0+,c , is given by
(see e.g. [9, Part I], [5], [15, Part I])

(Dα
0+,cf)(x) = x−cδmxc(Jm−α0+,c f)(x)

where α > 0,m = [α] + 1 and δ = (x
d

dx
). The (classical)

pointwise Mellin derivative of integral order, is defined by

lim
h→1

τ chf(x)− f(x)

h− 1

= lim
h→1

[
hcx

f(hx)− f(x)

hx− x
+
hc − 1

h− 1
f(x)

]
= xf ′(x) + cf(x),

provided f ′ exists a.e. on IR+, and the Mellin differential
operator of order r ∈ IN iteratively by Θ1

c := Θc, Θr
c :=

Θc(Θ
r−1
c ).

The following proposition gives the connection between
Mellin and ordinary derivatives.

Proposition 3: For the pointwise derivative of order r ∈ IN,
we have

(Dr
0+,cf)(x) = (Θr

cf)(x) =

r∑
k=0

Sc(r, k)xkf (k)(x),

where Sc(r, k), 0 ≤ k ≤ r, denote the generalized Stirling
numbers of second kind, defined recursively by

Sc(r, 0) := cr, Sc(r, r) := 1,

Sc(r + 1, k) = Sc(r, k − 1) + (c+ k)Sc(r, k).

In the fractional case, for a given α > 0, we define the
space Xα

c,loc by

{f ∈ Xc,loc : ∃(Dα
0+,cf)(x) a.e, Dα

0+,cf ∈ Xc,loc}.

Proposition 4: Let f ∈ Xα
c,loc be such that Θm

c f ∈ Xc,loc,
where m = [α] + 1. Then

(Dα
0+,cf)(x) = Θm

c (Jm−α0+,c f)(x) = Jm−α0+,c (Θm
c f)(x).

Now to the fundamental theorem of the fractional differential
and integral calculus in the Mellin frame.

Theorem 2: Let α > 0 be fixed. Let f ∈ Xα
c,loc, be

such that Dα
0+,cf ∈ DomJm0+,c and Θm

c f ∈ DomJm0+,c. If
Θm−1f ∈ X̃c,loc, then

(Jα0+,c(D
α
0+,cf))(x) = f(x), a.e. x ∈ IR+.

Moreover, let f ∈ DomJm0+,c be such that Jα0+,cf ∈ Xc,loc.
Then

(Dα
0+,c(J

α
0+,cf))(x) = f(x), a.e. x ∈ IR+.

Concerning the connections between the strong and the point-
wise Mellin derivatives, we have the following

Theorem 3: Let α > 0 and c ∈]a, b] be fixed, and f ∈ Xα
[a,b]

be such that Θm
c f ∈ X[a,b]. Then f ∈Wα

[a,b] and

(Dα
0+,cf)(x) = s-Θα

c f(x), a.e. x ∈ IR+.

Proof. By Proposition 4 we have

(Dα
0+,cf)(x) = (Jm−α0+,c (Θm

c f))(x).

Thus passing to Mellin transforms, we have, for t ∈ IR,

[Dα
0+,cf ]∧M (ν + it) = [(Jm−α0+,c (Θm

c f))]∧M (ν + it)

= (c− ν − it)α−m[Θm
c f ]∧M (ν + it)

= (c− ν − it)α[f ]∧M (ν + it).

Hence, Dα
0+,cf and s-Θα

c f have the same Mellin transform
along the line ν + it, and so the assertion follows by the
identity theorem (see [6, Part I]).

Using the previous results, we give the following equivalence
theorem which is the fractional version of Theorem 10 in [6,
Part I].

Theorem 4: Let f ∈ X[a,b], α > 0. The following four
assertions are equivalent
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(i) f ∈Wα
X[a,b]

.
(ii) There is a function g1 ∈ X[a,b] such that, for every c ∈

]a, b[,

lim
h→1

∥∥∥∥ ∆α,c
h f

(h− 1)α
− g1

∥∥∥∥
Xc

= 0.

(iii) There is g2 ∈ X[a,b] such that, for every ν, c ∈]a, b[,

(c− ν − it)αM [f ](ν + it) = M [g2](ν + it).

(iv) There is g3 ∈ X[a,b] such that for c ∈]a, b[ and x ∈ IR+,

f(x) =
1

Γ(α)

∫ x

0

(
u

x

)c(
log

x

u

)α−1
g3(u)

du

u
a.e.

If one of the above assertions is satisfied, then Dα
0+,cf(x) =

s-Θα
c f(x) = g1 = g2 = g3 a.e. x ∈ IR+.

Proof. It is easy to see that (i) implies (ii), and (ii) implies
(iii) by Theorem 1. As to (iii) implies (iv), observe

M [Jα0+,cg2](ν + it) = (c− ν − it)−αM [g3](ν + it).

As far as we know, a fundamental theorem with four
equivalent assertions in the form presented above for the
Mellin transform in the fractional case has never been stated
for the Fourier transform. As a fundamental theorem in the
present sense it was first established for 2π−periodic functions
via the finite Fourier transform in [10], and for the Chebyshev
transform in [7], [8]. Fractional Chebyshev derivatives were
there defined in terms of fractional order differences of the
Chebyshev translation operator, the Chebyshev integral by an
associate convolution product. The next fundamental theorem,
after that for Legendre transforms (see e,g. [2]), was the one
concerned with the Jacobi transform, see e.g. [9].

III. THE EXPONENTIAL SAMPLING THEOREM

Let BTc denote the class of functions f ∈ Xc, f ∈ C(IR+),
c ∈ IR, which are Mellin band-limited in the interval [−T, T ],
T ∈ IR+, thus for which [f ]∧M (c+ it) = 0 for all |t| > T. A
mathematician’s version of the exponential sampling theorem
introduced by the electrical engineers/physicists M.Bertero,
E.R. Pike [5, Part I] and F. Gori [14, Part I], reads as follows

Theorem 5: If f ∈ BπTc for some c ∈ IR, and T > 0, then
the series

xc
∞∑

k=−∞

f(ek/T )linc/T (e−kxT )

is uniformly convergent in IR+, and one has the representation

f(x) =

∞∑
k=−∞

f(ek/T )linc/T (e−kxT ) ≡ EcT f(x) (x ∈ IR+).

The linc−function for c ∈ IR, linc : IR+ → IR, is defined, for
x ∈ IR+ \ {1}, by

linc(x) =
x−c

2πi

xπi − x−πi

log x
=
x−c

2π

∫ π

−π
x−itdt,

with the continuous extension linc(1) := 1, thus linc(x) =
x−csinc(log x).

As we all know, bandlimitation in the classical Fourier version
of the Whittaker-Kotel’nikov-Shannon sampling theorem is a
restriction we try to avoid. Likewise it is so in the Mellin
setting. In this respect we have the following approximate
version.

Theorem 6: Let f ∈ Xc ∩ C(IR+), c ∈ IR, be such that
M [f ] ∈ L1({c} × iIR). Then there holds the error estimate∣∣∣∣f(x)−

∞∑
k=−∞

f(ek/T )linc/T (e−kxT )

∣∣∣∣
≤ x−c

π

∫
|t|>πT

|M [f ](c+ it)|dt (x ∈ IR+, T > 0).

Corollary 1: Let f ∈ Xc ∩ C(IR+), c ∈ IR, be such that
M [f ] ∈ L1({c} × iIR). Then

lim
T→+∞

|f(x)− EcT f(x)| = 0, x ∈ IR+.

Further, if f ∈ BπTc for some T > 0, then, for all T ≥ T ,
f(x) = EcT f(x), x ∈ IR+.

The operator s-Θα
c f, α > 0, plays the basic role in the

following corollary, giving the fast rate of approximation of
f(x), depending on its order α, by the exponential sampling
sum EcT f(x).

Corollary 2: If f ∈ Wα
Xc
, c ∈ IR, α > 0, is continuous on

IR+ such that M [s-Θα
c f ] ∈ L1({c} × iIR), then

|f(x)− EcT f(x)| = o(T−α), (x ∈ IR+;T → +∞).

Proof. According to Theorem 1, |[f ]∧M (c + it)| =
|t|−α|[s-Θα

c f ]∧M (c+ it)|, t ∈ IR, so that:∫
|t|>πT

|[f ]∧M (c+ it)|dt

≤ 1

παTα

∫
|t|>πT

|[s-Θα
c f ]∧M (c+ it)|dt = o(T−α),

so the assertion follows by Theorem 6.

In the previous new corollary, we can consider the pointwise
derivative Dα

0+,c with the assumptions of Theorem 3.
One of the several theorems which are equivalent to the
classical Whittaker-Kotel’nikov-Shannon sampling theorem is
the well known reproducing kernel formula. In the Mellin
setting, it reads as follows, for functions in BTπc , T > 0

Theorem 7: Let f ∈ BTπc , c ∈ IR, T > 0, be fixed. Then
we have

f(x) = T

∫ ∞
0

f(y)linc/T

(
(
x

y
)T
)
dy

y
(x ∈ IR+).

Proof: Putting h(y) = f(y1/T ), we have h ∈ Bπc/T . Then
using the reasoning of Lemma 6.3 in [8, Part I] we can write

[h(y)linc/T (x/y)]∧M (it)

=
x−c/T

2π

∫ π

−π
[h]∧M (c/T + i(t+ v))x−ivdv (t ∈ IR).
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Then for t = 0 we get∫ ∞
0

h(y)linc/T (x/y)
dy

y

=
x−c/T

2π

∫ π

−π
[h]∧M (c/T + iv)x−ivdv = h(x)

by Theorem 2.4 in [8, Part I]. Thus we have

f(x1/T ) = T

∫ ∞
0

f(y)linc/T (x/yT )
dy

y
,

and putting x1/T = z we have the assertion.

A further new result is the approximate reproducing ker-
nel theorem, namely its version for not necessarily Mellin-
bandilimited functions. It states that

Theorem 8: Let f ∈ Xc, c ∈ IR, be continuous on IR+ such
that M [f ] ∈ L1({c} × iIR). Then there holds, for y ∈ IR+

and T > 0, the error estimate∣∣∣∣f(x)− T
∫ ∞
0

f(y)linc/T

(
(
x

y
)T
)
dy

y

∣∣∣∣
≤ x−c

2π

∫
|v|≥πT

|[f ]∧M (c+ iv)|dv.

IV. THE FINITE MELLIN TRANSFORM AND THE
MELLIN-POISSON SUMMATION FORMULA

The Poisson summation formula in the classical frame of
Fourier analysis is one the cornestones of all mathematical
analysis. To formulate and establish it in the Mellin setting
one needs further concepts, namely Mellin Fourier series
(introduced in [7, Part I]) and the associated finite Mellin
transform, since this Poisson summation connects the Mellin
transform with its finite version.

Definitions.
(i) A function f : IR+ → CC will be called recurrent, if

f(x) = f(e2πx) for all x ∈ IR+. The function f is
called c−recurrent for c ∈ IR, if xcf(x) is recurrent,
i.e., if f(x) = e2πcf(e2πx) for all x ∈ IR+.

(ii) The space Yc of c−recurrent functions f : IR+ → CC is
defined for c ∈ IR, by

Yc := {f ∈ L1
loc(IR

+) : f c-recurrent, ‖f‖Yc < +∞},

‖f‖Yc =
∫ eπ
e−π
|f(u)|us−1du, with s = c+ it.

(iii) The finite Mellin transform of f ∈ Yc, c ∈ IR is

Mc[f ](k) ≡ [f ]∧Mc
(k) =

∫ eπ

e−π
f(u)uc+it−1du, (k ∈ ZZ),

Mc : Yc → L∞(ZZ), f 7→ {[f ]∧Mc
(k)}k∈ZZ , with

‖Mc‖[Yc,L∞] = 1.
(iv) The associated Mellin-Fourier series of f ∈ Yc is

f(x) ∼ 1

2π

∞∑
k=−∞

[f ]∧Mc
(k)x−c−ik, (x ∈ IR+).

Theorem 9: Let f ∈ Xc, c ∈ IR, be continuous on IR+

such that
∑∞
k=−∞ |M [f ](c+ ik)| <∞. If the series

f c(x) :=

∞∑
k=−∞

f(e2πkx)e2πkc, (x ∈ IR+)

which is c−recurrent and absolutely convergent a.e. on the
interval [e−π, eπ] is also uniformly convergent there, then

M [f ](c+ ik) =Mc[f
c](k), (k ∈ ZZ),

and especially there holds

f c(x) =
1

2π

∞∑
k=−∞

M [f ](c+ ik)x−c−ik, (x ∈ IR+).

It is the strong feeling of the authors that not only the Mellin-
sampling theorem is equivalent to its approximate version,
but also the reproducing kernel theorem and its approximate
version are equivalent. Even more so all these theorems are
equivalent among themselves, and under suitable conditions,
are equivalent to the Mellin-Poisson summation formula.
Equivalence is understood in the sense that each is a corollary
of the others. This is indeed the situation in the non-fractional
version of the Fourier case as recently proved in [3], [4].
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