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Abstract—The Mellin transform and the associated convolution
integrals are intimately connected with the exponential sampling
theorem. Thus it is very important to develop the various tools of
Mellin analysis. In this part we pave the way to sampling analysis
by studying basic theoretical properties, including Mellin-type
fractional integrals, and give a new approach and version
for these integrals, specifying their basic semigroup property.
Especially their domain and range need be studied in detail.

I. INTRODUCTION

The theory of Mellin transforms and Mellin approximation
theory was introduced in a systematic form, fully independent
of Fourier analysis in [6], papers on the present line of research
being [1], [2], [3], [4]. Mellin transform theory is intimately
connected with the exponential sampling theorem, stating that

f(x) =

+∞∑
k=−∞

f(ek/T )linc/T (e−kxT ) (x ∈ IR+),

where f is a function which is Mellin-bandlimited to the
interval [−πT, πT ], and

linc(x) := x−csinc(log x), linc(1) = 1,

(see [8]). This version of the Shannon sampling theorem has
many applications in optical physics and engineering ([13],
[16], [5], [14]). Here the samples are not equally spaced apart
as in the case of the Whittaker-Kotel’nikov-Shannon sampling
theorem, but exponentially spaced; such spacing is needed in
those applications where independent pieces of information
accumulates near time t = 0.

The aim of this research is to put into a rigorous framework
such applications, making use only of results from the Mellin
transform theory. In [6] the following sentence is written:
The proofs of the Mellin results are mostly said to follow
by a change of variable and a change of function from the
corresponding Fourier or Laplace results. In fact one expresses
it as follows: ”It is a matter of using the theory of the Fourier
or Laplace transform to derive what one needs concerning the
Mellin transform”. However, the hypotheses upon which the
Mellin theory lies are often considered quite uncritically, and
certainly by no means in a unified, systematic fashion.

While the classical proof of the Shannon sampling theorem
is based on the Poisson summation formula, the exponential

version is established via the Mellin-Poisson summation for-
mula, which connects the classical Mellin transform with the
finite Mellin transform. Variuos fundamental facts in exponen-
tial sampling theory must be developed and, in this direction, a
deep study of Mellin analysis appears necessary. In particular,
the properties of Mellin convolution integrals and the Mellin
differential operators are fundamental tools. In papers [9], [10],
[11] certain Mellin convolution integrals, namely the so-called
Hadamard- type fractional integrals, were developed: these
integrals represent the appropriate extensions of the classical
Riemann-Liouville and Weyl fractional integrals and also lead
to definitions of certain Mellin fractional differential operators,
(see also the book [15]). The purpose of this article is a
continuation of these topics. As remarked in [9] the natural
operator of Mellin fractional integration is not the classical
Riemann-Liouville fractional integral of order α > 0 on IR+,
(see [17], [12]) but the integral

(Jα0+f)(x) =
1

Γ(α)

∫ x

0

(
log

x

u

)α−1
f(u)

du

u
(x > 0). (1)

Thus the operator of integration (anti-differentiation) is not
the integral

∫ x
0
f(u)du, as used throughout the literature in

matters Mellin transforms, including its table volumes, but the
integral

∫ x
0
f(u)du/u. The use of the latter makes calculations

not only much simpler but also more elegant.
For the development of the theory, it is important to consider

the following generalization of (1), for µ ∈ IR, x > 0 namely
(see [9], [10], [11])

(Jα0+,µf)(x) =
1

Γ(α)

∫ x

0

(
u

x

)µ(
log

x

u

)α−1
f(u)

du

u
(2)

for functions belonging to the space Xc of all measur-
able complex-valued functions defined on IR+, such that
(·)c−1f(·) ∈ L1(IR+).

Since the definition of pointwise fractional derivatives, as
defined in [10], is based on the Hadamard type integral, it
is important to study in depth the domain and the range of
these integrals. Here we first introduce the local spaces Xc,loc

and furnish some results concerning both the domain and the
range. In this respect, a fundamental role is played by a new
version of the basic semigroup property, which is proved here
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in a direct way, as an extension of a corresponding property
for spaces Xp

c given in [10].
The theory of Hadamard fractional integrals is one of the

topics which reveals the importance of a direct approach via
Mellin transforms. For example, while the domain of the
classical Riemann-Liouville fractional operators of any order
α contains all the locally integrable functions over the positive
real line, this is no longer true for Hadamard operators. Indeed,
for α > 1, the domain of Jα0+,c is strictly contained in the
space Xc,loc. This implies that the Hadamard integrals and the
corresponding notion of pointwise Mellin fractional derivative,
which we develop in the second part of this study, represent
new types of integro-differential operators which must be
properly treated using Mellin transform theory.

In the second part we apply these results to the exponential
sampling.

II. MELLIN FRACTIONAL INTEGRALS

Let L1 = L1(IR+) be the space of all the Lebesgue
measurable and integrable complex valued functions defined
on IR+, endowed with the usual norm.

Let us consider the space, for some c ∈ IR,

Xc = {f : IR+ → CC : f(x)xc−1 ∈ L1(IR+)}

endowed with the norm

‖f‖Xc = ‖f(·)(·)c−1‖L1 =

∫ ∞
0

|f(u)|uc−1du.

For a, b ∈ IR we define the spaces X(a,b), X[a,b] by

X(a,b) =
⋂

c∈]a,b[

Xc, X[a,b] =
⋂

c∈[a,b]

Xc

and, for every c in the given intervals, ‖f‖Xc is a norm on
them.

We define for every f ∈ Xc the Mellin transform, with
s = c+ it ∈ CC, c, t ∈ IR, by

M [f ](s) ≡ [f ]∧M (s) =

∫ ∞
0

us−1f(u)du.

Thus M : Xc → C({c} × iIR), f → M [f ] = [f ]∧M , (see
[6]). A boundedness property for Jα0+,µ in the space Xc, is
needed when the coefficient µ is greater than c. This is due to
the fact that only for µ > c, we can view Jα0+,µf as a Mellin
convolution between two functions in Xc. However, we are
interested here in the domain and the range of these fractional
operators when µ = c. We will show that for any non-trivial
function f in the domain of Jα0+,c the image Jα0+,cf cannot
be in Xc. This implies that we cannot compute its Mellin
transform in the space Xc.

We define the domain of Jα0+,c, for α > 0 and c ∈ IR, as
the class of all the functions such that∫ x

0

uc
(

log
x

u

)α−1
|f(u)|du

u
< +∞,

for a.e. x ∈ IR+, denoted by DomJα0+,c.

Let Xc,loc be the space of all the functions such that
(·)c−1f(·) ∈ L1(]0, a[) for every a > 0.

Proposition 1: If f ∈ Xc,loc, then the function (·)cf(·) ∈
X1,loc. Moreover, if c < c′, then Xc,loc ⊂ Xc′,loc.

Note that the above inclusion does not hold for spaces Xc.

Concerning the domain of the operator Jα0+,c, we begin with
Proposition 2: Let α > 1, c ∈ IR be fixed. Then

DomJα0+,c ⊂ Xc,loc.

For α = 1 we have immediately DomJ1
0+,c = Xc,loc.

The case 0 < α < 1 is more delicate. In this instance
Xc,loc ⊂ DomJα0+,c, due to the following ”local” version of
the semigroup property of Jα0+,c:

Theorem 1: Let α, β > 0, c ∈ IR be fixed. Let f ∈
DomJα+β0+,c . Then

(i) f ∈ DomJα0+,c ∩DomJ
β
0+,c

(ii) Jα0+,cf ∈ DomJ
β
0+,c and Jβ0+,cf ∈ DomJα0+,c.

(iii) (Jα+β0+,c f)(x) = (Jα0+,c(J
β
0+,cf))(x), a.e. x ∈ IR+.

(iv) If α < β then DomJβ0+,c ⊂ DomJα0+,c.

Thus if 0 < α ≤ 1, c ∈ IR, then Xc,loc ⊂ DomJα0+,c.
The inclusion in (iv) of Theorem 1 is strict for any choice

of α and β. It is sufficient to consider the function, with α <
γ < β,

f(x) =
x−c

| log x|γ
χ]0,1/2[(x),

χ]0,1/2[ being the characteristic function of interval ]0, 1/2[.

A sufficient condition in order that a function f belongs to
DomJα0+,c for α > 1, is

Proposition 3: Let α > 1. If f ∈ Xc,loc is such that
f(u) = O(u−(r+c−1)) for u → 0+ and 0 < r < 1, then
f ∈ DomJα0+,c.

As a consequence, for c ∈ IR fixed, we have

X̃c,loc ⊂
⋂
α>0

DomJα0+,c.

Concerning the range of the operators Jα0+,c we need the
following important propositions.

Proposition 4: Let α > 0, c ∈ IR be fixed. If f ∈
DomJα+1

0+,c, then Jα0+,cf ∈ Xc,loc.

As a consequence we can deduce that if f ∈ DomJα0+,c, not
necessarily does Jα0+,cf ∈ Xc,loc.

For spaces Xc we have the following
Proposition 5: Let α > 0, c ∈ IR be fixed. If f ∈

DomJα0+,c, then Jα0+,cf 6∈ Xc, unless f = 0 a.e. in IR+.

However we have the following property.
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Proposition 6: Let α > 0, c, ν ∈ IR, ν < c, being fixed. If
f ∈ DomJα0+,c ∩X[ν,c], then Jα0+,cf ∈ Xν and

‖Jα0+,cf‖Xν =
‖f‖Xν

(c− ν)α
.

Moreover, for any s = ν + it,

|M [Jα0+,cf ](s)| ≤ ‖f‖Xν
(c− ν)α

.
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