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Abstract—An important problem in communication engineer-
ing is the energy concentration problem, that is the problem of
finding a signal bandlimited to [—o,c] with maximum energy
concentration in the interval [—7,7],0 < 7, in the time domain,
or equivalently, finding a signal that is time limited to the interval
[-7,7] with maximum energy concentration in [—o, o] in the
frequency domain. This problem was solved by a group of math-
ematicians at Bell Labs in the early 1960’s. The solution involves
the prolate spheroidal wave functions which are eigenfunctions
of a differential and an integral equations.

The main goal of this talk is to present a solution to the energy
concentration problem in a Hilbert space of functions. This
solution will contain as a special case the solution to the energy
concentration problem in both the fractional Fourier transform
and the linear canonical transform domains. The solution involves
a generalization of the prolate spheroidal wave functions, which
when restricted to the fractional Fourier transform domain, we
may call fractional prolate spheroidal wave functions.

I. INTRODUCTION

One of the fundamental problems in communication engi-
neering is the energy concentration problem, that is the prob-
lem of finding a signal bandlimited to [—o, o] with maximum
energy concentration in the interval [—7, 7],0 < 7, in the time
domain or equivalently, finding a signal that is time limited
to the interval [—7, 7] with maximum energy concentration in
[~o,0] in the frequency domain. This problem was solved
by a group of mathematicians, D. Slepian, H. Landau, and H.
Pollak, at Bell Labs [6], [7], [12], [17] in the early 1960’s. The
solution involves the prolate spheroidal wave functions which
are eigenfunctions of a differential and an integral equations.

Because bandlimited functions are entire functions, they
cannot vanish outside any interval and as a result the energy
concentration in any interval [—7, 7] cannot be 100%. The
percentage of the energy concentration depends on o and 7 and
involves the eigenvalues of a certain integral equation satisfied
by the prolate spheroidal wave functions. The solution of the
problem uses properties of the Fourier transform, among them
is the fact that the Fourier transform of a prolate spheroidal
wave function is a multiple of a scaled version of itself.

Recall that the energy concentration of f in (—7,7) is given
by f % dt; therefore, the solution of the concentratlon
problem can be found by finding the function f that maximizes

the ratio . )
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A more general problem to consider is the energy concen-
tration problem in the fractional Fourier transform domain.
That is to find a signal that is bandlimited to [—o, 0] in the
fractional Fourier transform domain with maximum energy
concentration in the interval [—7,7],0 < 7, in the time
domain. This problem, in turn, is a special case of the energy
concentration problem for the linear canonical transform. The
latter problems were solved in [15] and discrete versions of
them were solved in [22]. The solutions involved what the au-
thors called the generalized prolate spheroidal wave functions.
The generalized prolate spheroidal wave functions associated
with the fractional Fourier transform and the linear canonical
transform have interesting applications in the analysis of the
status of energy preservation of optical systems, self-imaging
phenomenon, and the resonance phenomenon of finite-sized
one-stage and multiple-stage optical systems [15].

The main goal of this article is to solve the energy con-
centration problem in a Hilbert space of functions which
will contain the fractional Fourier transform and the linear
canonical transform as special cases.

A. The Fractional Fourier Transform

The fractional Fourier transform (or FrFT) was first intro-
duced by Namias in 1980 in connection with an application
in quantum mechanics [11]. But since its introduction to the
signal processing community in the early 1990’s, the transform
has become an important tool in signal processing applications
and signal representation in the fractional Fourier transform
domain has been an active area of investigation [1], [3], [4],
(51, (81, [91, [101, [13], [14], [19], [20], [21].

The fractional Fourier Transform or FrFT of a signal or a
function, say f(t) € L?(IR), is defined by

/ f(t)ko (t,w) dt (D

where
c(f) - 30OV E W) =ibO)wt g £ pr
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is the transformation kernel with

c(0) = /(1 —jcoth)/2m, a(f) = cotf/2, and b(#) = csch.
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The kernel ky(¢,w) is parameterized by an angle 6 € IR and
p is some integer. For simplicity, we may write a, b, ¢ instead
of a(f),b(0), and ¢(f). The inverse-FrFT with respect to an
angle 6 is the FrFT with angle —6, given by
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When 6 = /2, (1) reducesAto the cilassical Fourier transform,
which will be denoted by fr/2 = f
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Let kg(t,w) be the kernel of FrFT and define the operator Ly
as

Lolfi@) = [ fOk(tw)d
It is easy to see that
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It can be shown that the solution of the concentration
problem for the Fractional Fourier transform is the solution
of the integral equation (3)

o
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that yields the maximum A, where
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The solutions of the integral equation (3) share similar
properties with the prolate spheroidal wave functions, but
satisfy more general differential and integral equations. For
lack of better terminology, we shall call these new functions
fractional prolate spheroidal wave functions.

Ky (w,0) =<

B. The Linear Canonical Transform

The linear canonical transform G4, q)(u) of a function
f(x), which depends on four parameters a, b, ¢, d, is defined
as

* Kiapea (@ w) fl@)de, b#£0
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where
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with ad — bec = 1.
For a = cosf,b = sinf,c = —sinf,d = cos#l, the
linear canonical transform reduces to the fractional Fourier
transform.

C. The Prolate Spheroidal Wave Functions

The prolate spheroidal wave functions (PSWF), were first
discovered in [12] as the bounded eigenfunctions of the
following differential operator L.,

2
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where ¢ > 0 is a real number. In the 1960’s, the group at Bell
Labs discovered that the following integral operator

)= [ gnaty iz =0
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commutes with L., where ¢, . are the eigenfunctions of the
operator (4). This commutation relation was termed “a lucky
accident” by David Slepian. In a series of papers, the group at
Bell Labs employed the commutation relation to derive several
properties of the prolate spheroidal wave functions, see [6],
[7], [17]. For example, they have showed that the PSWFs
satisfy the following integral equation

dt, ®)

1
[ onc@yeds = pm(cpn.otw) ©)
-1
The PSWFs are normalized so that
+oo 5
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or equivalently,
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where \,,(c) is the nth eigenvalue of F.. The most important

properties of the PSWFs are:

(P1) The set of PSWFs {¢,, ¢, € IN} is an orthogonal basis
of L?([~1,1]). More precisely, we have

1
/ On,e(T)Pm,c(x) dz = A (¢)Omn.
-1
(P2) The Fourier transform of ¢, . is given by :
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(P3) The set of PSWFs {¢,, .,n € IN} is an orthonormal set

of L?(IR) and also an orthonormal basis of B.., where

B. = {f € L*(IR) : supp(f) C [~e.d]},
is the space of functions bandlimited to [—c, c].

II. CONCLUSION

The main goal of this talk is to show that the energy
concentration problem can be solved in a general Hilbert space
of functions using the theory of reproducing-kernel Hilbert
spaces. To outline the setting in which the problem will be
solved, let us introduce the following notation.

Let £ be an arbitrary set and F(€) be the linear space of
all complex-valued functions defined on £. Let du be a o-
finite positive measure and 7 be a dj-measurable set in R” .
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Consider the Hilbert space H = L?(7,du) consisting of all
complex-valued functions F' such that

1Py = /T F@)Pdu(t) < oo.

Let h(t,p) denote a complex-valued function on 7 x &, such
that

h(t,p) € L*(T,dpu) for any p € £.
Let L be the linear mapping L : L*(T,du) — F(&) defined
by

f(0) = (LF)(p) = / F(t)h(t, p)du(t),

T

F € L*(T,dp).

)]
It is not difficult to see that the the function

K(p,q) = /T h(t, q)h(t, p)dpu(t),

is positive definite on &, i.e.,

> ad@K(pi,p;) > 0,

i=1j=1

(10)

for any finite set {p;} of £. Then it follows from [2] that
K(p,q) is a reproducing kernel for some Hilbert space of
functions defined on £. In fact, the set of all f’s given by
(9), i.e., the range of the operator L, is a reproducing-kernel
Hilbert space ‘H whose reproducing kernel is given by (10) so
that f(q) =< f, K(.,q) >; see [16].

Hereafter, all functions of the form (9) will be called K-
bandlimited functions. In this talk we will show that the
energy concentration problem can be solved for the class of
K-bandlimited functions, but the details will be published
somewhere else. The problem will be solved by constructing
a sequence of functions that share similar properties to those
of the PSWE, in particular Equations (5), (6), and properties
P, 1 and P 2.
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