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Abstract—In this paper are considered some generalized Shan-
non sampling operators which preserve the total variation of
functions and their derivatives. For that purpose will be used
the averaged kernel functions of certain even bandlimited kernel
functions.

I. INTRODUCTION

In this paper we investigate the generalized Shannon sam-
pling operators, which preserve the total variation of functions
and their derivatives.

Dealing with the class of functions of bounded variation
BV [0, 1], the Bernstein polynomials have the following the
total variation preserving property (due to G.G.Lorentz, 1937)

V[0,1][Bnf ] ≤ V[0,1][f ],

where f ∈ BV [0, 1]. In [3] this was called as the variation
detracting property, sometimes called also as the variational
diminishing property. Such kind of the total variation preserv-
ing property is known for many positive operators [1].

There have been also interests in the variation detracting
property for the derivative of the Bernstein operator (e.g. [5])
expressed by the inequality

V[0,1][(Bnf)
′] ≤ V[0,1][f ′].

The generalized Shannon sampling operators [4] for the
uniformly continuous and bounded functions f ∈ C(R) are
given by (t ∈ R; W > 0)

(SW f)(t) :=

∞∑
k=−∞

f(
k

W
)s(Wt− k). (1)

The variation detracting property for the generalized Shan-
non sampling operators could be in form:

let f ∈ BV (R) implies SW f ∈ BV (R) and

VR[SW f ] ≤ C0(SW ) VR[f ]

is valid, where the constant C0 = C0(SW ) depends on the
norm of the operator SW : C(R) → C(R). The variation
detracting property for the derivatives of the generalized
Shannon sampling operators could be in form:

let f ′ ∈ BV (R) implies (SW f)
′ ∈ BV (R) and

VR[(SW f)
′] ≤ C1(SW ) VR[f

′]

for some constant C1 = C1(SW ) depending on the norm of
the operator SW .

For any f ∈ C(R) the operators SW are well-defined, if
the kernel function s satisfies the condition

sup
u∈R

∞∑
k=−∞

|s(u− k)| <∞, (2)

hence s ∈ L1(R). Moreover [4], {SW }W>0 defines a family
of bounded linear operators from C(R) into itself, having its
operator norm

‖SW ‖ = sup
u∈R

∞∑
k=−∞

|s(u− k)| (W > 0). (3)

In our approach the kernel functions of sampling operators
defined above will be some even band-limited functions s, i.e.
s ∈ L1(R), and these are given as the Fourier transform of
an even window function λ ∈ C[−1,1], λ(0) = 1, λ(u) = 0
(|u| > 1) by the equality

s(t) := s(λ; t) :=

1∫
0

λ(u) cos(πtu) du. (4)

These type of window (also called as the apodization) func-
tions have been widely used in applications (e.g., [2], [10] and
literature cited there), in Signal Analysis in particular, very
long time.

The leading idea to consider the variation detracting prop-
erty of (1) is to construct some related kernels to the kernel (4).
For the kernels defined by (4) holds the following proposition.

Proposition 1. Define the related kernels to the kernel (4)
as follows:

sm(t) :=

∫ 1

0

λ(u)

sinc(mu)
cos(πtu)du (5)

for 0 < m ≤ 1, and

sm,n(t) :=

∫ 1

0

λ(u)

sinc(mu) sinc(nu)
cos(πtu)du (6)
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for 0 < m,n ≤ 1. Then

s(t) =
1

2m

∫ m

−m
sm(t+ x)dx (7)

=
1

4mn

∫ m

−m
dx

∫ n

−n
sm,n(t+ x+ y)dy, (8)

sm(t) =
1

2n

∫ n

−n
sm,n(t+ y)dy. (9)

Remark 1. The kernels (5) and (6) are well-defined, if
in case m = 1 or n = 1 we assume the existence of
the continuous left derivative with value λ ′(1−) = 0. If
m = n = 1, we assume the existence of the continuous left
second derivative with value λ ′′(1−) = 0.

Since (8) and (9), we have the following
Corollary 1. If sm,n ∈ L1(R), then sm ∈ L1(R) and

‖s‖1 ≤ ‖sm‖1 ≤ ‖sm,n‖1.

Remark 2. If s ∈ L1(R), then by (4) s ∈ B1
π ⊂ L1(R),

where B1
π is a Bernstein class [6]. Under conditions of

Remark 1, and by Proposition 1, equations (5), (6), assuming
sm,n ∈ L1(R), the kernels sm, sm,n ∈ B1

π as well.
Some examples of kernels defined by (4), which appear in

our applications, are given as follows:
1) λ(u) = 1 defines the sinc function (the exceptional case,

because sinc(·) 6∈ L1(R))

sinc(t) :=
sinπt

πt
;

2) λ(u) = sincu defines the Lanczos’ kernel (with cor-
responding operator LW ), which by (4) appears to be the
averaged sinc-function

sL(t) =
1

2

1∫
−1

sinc(t+ v) dv; (10)

3) λ(u) = cos πu2 defines the Rogosinski-type kernel (with
corresponding operator RW ) in the form

r0(t) =
1

2π
· cosπt1

4 − t2
.

II. TOTAL VARIATION ON R
Let us consider functions of bounded variation in the

following meaning.
Definition. We say that f ∈ BV (R), the space of all

functions of bounded variation on R, iff there exists a.e.
derivative f ′ ∈ L1(R); and we define the total variation of
f ∈ BV (R) as

VR[f ] := ‖f ′‖1 =

∞∫
−∞

|f ′(v)| dv.

Next we give some statements and properties of BV (R).
Proposition 2. For f ∈ BV (R) and any monotone increas-

ing sequence {tk}∞k=−∞ ⊂ R with limk→±∞ tk = ±∞ one

has:
1)

∞∑
k=−∞

|f(tk + v)− f(tk−1 + v)| 6 VR[f ] (v ∈ R);

2) f is bounded and there exist limt→±∞ f(t);
3) f is locally integrable, and

1

b− a

∞∑
k=−∞

∫ b

a

|f(tk + v)− f(tk−1 + v)|dv 6 VR[f ].

Proposition 3. Let f ′ ∈ BV (R), and let a ∈ R, W >
0, tk = k

W , k ∈ Z. Then

W

∞∑
k=−∞

∣∣∣f(tk + a)− 2f(tk−1 + a)+ f(tk−2 + a)
∣∣∣ ≤ VR[f ′].

III. THE VARIATION DETRACTING PROPERTY

The variation detracting property of certain sampling oper-
ators will be considered for BV (R), the space of all functions
of bounded variation on R. This property is important in
practice, since often signals are discontinuous but still with
bounded variation.

Theorem 1. Assume sm ∈ L1(R). If there exists a number
b ∈ R such that ±m − b ∈ Z, then for f ∈ BV (R) we have
SW f ∈ BV (R) and

VR[SW f ] ≤ ‖sm‖1 VR[f ].

The proof of Theorem 1 was essentially presented in [7].
By Corollary 1 and Theorem 1 we obtain under assumptions
of Theorem 1

Corollary 2.

VR[SW f ] ≤ ‖sm,n‖1 VR[f ].

For the proof of Theorem 2 we need the following technical
lemma.

Lemma. For any sequence (a0, a1, a2, ...) and M,N ∈ N
we have
M∑
i=1

N∑
j=1

(
ai+j−2ai+j−1+ai+j−2

)
= a0−aM−aN+aM+N .

The variation detracting property for derivatives will be read
as follows.

Theorem 2. Assume the kernel sm,n ∈ L1(R) for m 6=
0, n 6= 0, such that there exists b ∈ R with ± m ± n − b ∈ Z.
If f is bounded and f ′ ∈ BV (R), then (SW f)

′ ∈ BV (R) and

VR[(SW f)
′] ≤ ‖sm,n‖1 VR[f ′].

Proof. By (7) we get (see also Remarks 1 and 2)

s′(t) =
1

2m

(
sm(t+m)− sm(t−m)

)
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and hence by (9) we obtain

s′′(t) =
1

2m

(
s′m(t+m)− s′m(t−m)

)
=

1

4mn

∫ n

−n

(
s′m,n(t+m+ y)− s′m,n(t−m+ y)

)
dy

=
1

4mn

(
sm,n(t+m+ n)− sm,n(t+m− n)

− sm,n(t−m+ n) + sm,n(t−m− n)
)
.

So by (1) we have

(SW f)
′′(t) = W 2

∑
k

f
( k
W

)
s′′(Wt− k)

=
W 2

4mn

∑
k

f
( k
W

)(
sm,n(Wt− k +m+ n)

− sm,n(Wt− k +m− n)
− sm,n(Wt− k −m+ n)

+ sm,n(Wt− k −m− n)
)
.

Since sm,n ∈ L1(R), then by (6) sm,n ∈ B1
π ⊂ L1(R) and

for sm,n the condition (2) is satisfied by Nikolskii’s inequality.
Therefore, since f is bounded, the series here is absolutely and
uniformly convergent. Under assumptions of Theorem 2 on a
number b ∈ R we get

(SW f)
′′(t)

=
W 2

4mn

∑
k

(
f
(k +m+ n− b

W

)
− f

(k +m− n− b
W

)
− f

(k −m+ n− b
W

)
+ f

(k −m− n− b
W

))
× sm,n(Wt− k + b). (11)

The application of Lemma with M = 2m,N = 2n,

al = f
(k + l −m− n− b

W

)
,

(k ∈ Z,W > 0, l = 0, 1, ...) gives

f
(k −m− n− b

W

)
− f

(k +m− n− b
W

)
− f

(k −m+ n− b
W

)
+ f

(k +m+ n− b
W

)
=

2m∑
i=1

2n∑
j=1

(
f
(k + i+ j −m− n− b

W

)
− 2f

(k + i+ j − 1−m− n− b
W

)
+ f

(k + i+ j − 2−m− n− b
W

))
.

Now by (11) we have

(SW f)
′′(t) =

W 2

4mn

∑
k

2m∑
i=1

2n∑
j=1

(
f
(k + i+ j −m− n− b

W

)
− 2f

(k + i+ j − 1−m− n− b
W

)
+ f

(k + i+ j − 2−m− n− b
W

))
sm,n(Wt− k + b).

Estimating and integrating over R yields

‖(SW f)′′‖1 ≤ ‖sm,n‖1
W

4mn

2m∑
i=1

2n∑
j=1

∑
k

∣∣∣f( k
W

+ aij
)

− 2f
(k − 1

W
+ aij

)
+ f

(k − 2

W
+ aij

)∣∣∣,
where aij = i+j−m−n−b

W . The application of Proposition 3
yields

‖(SW f)′′‖1 ≤ ‖sm,n‖1
1

4mn

2m∑
i=1

2n∑
j=1

VR[f
′]

= ‖sm,n‖ VR[f ′].

This concludes the proof.
In analogous way we can consider the variation detracting

property for the second derivative. We have the following
Theorem 3. Assume the kernel sm,n,r ∈ L1(R) for

0 < m,n, r < 1 such that there exists b ∈ R with
±m± n± r − b ∈ Z. Here

sm,n,r(t) :=

∫ 1

0

λ(u)

sinc(mu) sinc(nu) sinc(ru)
cos(πtu)du.

If f is bounded and f ′′ ∈ BV (R), then (SW f)
′′ ∈ BV (R)

and
VR[(SW f)

′′] ≤ ‖sm,n,r‖1 VR[f ′′].

IV. APPLICATIONS

1) If we take λL(u) = sincu, the Lanczos’ window
function, then we get

λL(u)

sinc u2
= cos

πu

2
≡ λR(u),

which is the Rogosinski window. Applying Theorem 1 with
m = b = 1

2 , by Corollary 2 we obtain

VR[LW f ] ≤ ‖r0‖1 VR[f ].

If we take m = n = 1
2 in (6), we get

λL(u)

sinc2 u2
=
πu

2
cot

πu

2
≡ λF1(u),

which defines the Favard-type kernel sF1 ([9], Section 4.1.3;
[11], Chapter 3, Section 1). Applying Theorem 2 with
m = n = 1

2 , b = 0, we obtain

VR[(LW f)
′] ≤ ‖sF1‖1 VR[f ′].
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If we take m = n = r = 1
2 in Th. 3, then we get

λL(u)

sinc3 u2
=
(πu

2

)2 cot πu2
sin πu

2

≡ λF2
(u),

which defines the Favard-type kernel sF2 (see [11], Ch. 3,
Sect. 1). Applying Theorem 3 with m = n = r = b = 1

2 , we
obtain

VR[(LW f)
′′] ≤ ‖sF2

‖1 VR[f ′′].

Remark 3. In [8] we proved that ‖r0‖1 = ‖LW ‖, thus the
variation detracting property takes a very natural shape,

VR[LW f ] ≤ ‖LW ‖ VR[f ].

2) If we take λR(u) = cos πu2 , the Rogosinski window
function, we get

λR(u)

sinc u2
= λF1(u).

Applying Theorem 1 with m = b = 1
2 , we get

VR[RW ] ≤ ‖sF1‖1 VR[f ].

If we take m = n = 1
2 in (6), we again have the Favard-type

window

λR(u)

sinc2 u2
=
(πu

2

)2
·
cot πu2
sin πu

2

= λF2
(u).

Applying Theorem 2 with m = n = 1
2 , b = 0, we have

VR[(RW f)
′] ≤ ‖sF2

‖1 VR[f ′].

3) Let λH(u) = cos2 πu2 be the Hann window function,
then

λH(u)

sincu
=
πu

2
cot

πu

2
= λF1

(u).

Applying Theorem 1 with m = b = 1 we get

VR[HW f ] ≤ ‖sF1
‖1 VR[f ].

If we take m = 1, n = 1
2 in (6), we have

λH(u)

sincu · sinc u2
=

cos πu2
sinc2 u2

= λF2(u),

which defines the Favard-type kernel. Applying Theorem 2
with m = 1, n = 1

2 , b =
1
2 , we obtain

VR[(HW f)
′] ≤ ‖sF2‖1 VR[f ′].

V. CONCLUSION

We investigated the variation detracting property of the
generalized Shannon sampling operators,

(SW f)(t) :=

∞∑
k=−∞

f(
k

W
)s(Wt− k),

which preserve the total variation of functions and their
derivatives, i.e.

VR[(SW f)
(k)] ≤ ‖sm,n,r‖1 VR[f (k)],

where k = 0, 1, 2 and sm,n,r are certain related kernels to the
original kernel

s(t) := s(λ; t) :=

1∫
0

λ(u) cos(πtu).

As applications we considered some, in literature known
examples of kernels, which realize the variation detracting
property of the generalized Shannon sampling operators.
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