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Abstract—Employing discrete B-splines instead of the Gaussian
distribution, we construct an algorithm for the analysis of ion-
mobility spectrometry profiles. The algorithm is suitable for
hardware implementation because the discrete B-splines are
supported by a simple digital filter to compute their weighted
sum and their correlations with a given signal. Minutely shifted
discrete B-splines are deployed of which weighted sum is to
approximate a given profile with non-negative weights. Closely
neighboring discrete B-splines are almost linearly dependent so
that they may cause numerical instability in the approximation
process. But numerical experiments deny this anxiety at least
for the final results. Varying the width of discrete B-splines, we
obtain a number of different approximations. Out of sufficiently
precise approximations, we choose the sparse one in the sense
that it comprises few discrete B-splines with large weights.

I. INTRODUCTION

Ion-mobility spectrometry [1] is a method of discriminating
chemical molecules in the atmosphere. Its capability of identi-
fying tiny amounts of various chemicals has made it possible
to analyze odor and flavor and to detect poisons, drugs and
explosives. The analysis is mainly composed of physical and
computational processes.

The physical process proceeds in this way: (i) Chemical
molecules are ionized and injected near the cathode as shown
in Fig. 1(a). (ii) The ions move toward the anode with the ac-
celeration proportional to their charge-mass-ratio as illustrated
in Fig. 1(b). Light ions reach the anode earlier than the heavier
ones on the average. The ions bump and bounce against air
and other molecules during their travel so that even ions of the
same kind arrive at the anode in different traveling times. (iii)
The ions give their charges to the anode which constitute the
electric current called profile like the curve in Fig. 2(a). The
profile is modeled as a weighted sum of several distributions
as schematized in Fig. 2(b). Each distribution is traditionally
supposed to be Gaussian because any random displacements
of ions by their collision with other molecules amount to a
Gaussian distribution if they happen infinitely many times.

The computational process identifies each different distribu-
tion in a given profile. Its weight and average tell, respectively,
how much and what kind of ions are present. The standard
algorithm employs the steepest descent method to search for
locally optimal values of unknown parameters such as average,
variance and weight of an unknown number of Gaussian

distributions. This search has to be conducted sequentially so
that it consumes much time even on the latest fast CPUs.

While a tiny chip from Owlstone Nanotech [2] and a system
solution from ATONARP [3] have already made it possible
to complete the physical process in a few milliseconds, the
computational algorithm is still sequentially searching for local
optima at much computational cost. In this paper, we shall
approach a new algorithm which matches up to the compact
and fast physical system. This approach is characterized by
the following four features:

(i) Instead of the Gaussian distribution, we use the B-spline
[4] of order m that is defined as the m-fold convolution inte-
gral of a uniform distribution and represents the distribution
of ion position after m collisions if one causes a uniformly
random displacement. The B-spline is a good substitute since
it tends to the Gaussian at the limit m → ∞. We can even
say that the Gaussian was not the perfect choice because it has
infinitely long tails that never exist in reality. We had better
take a large m but do not have to make it infinity.

(ii) For the sake of simpler computation, the B-splines are
further replaced by their discrete version1 defined as the m-
fold discrete convolution of the uniform discrete distribution
over n sampling points. The discrete B-splines can be gen-
erated by only additions and subtractions [6]. There is also

(a) Initial state (b) Analyzing process

Fig. 1. Schematics of the ion-mobility spectrometry
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(a) Profile (ion current) (b) Composite model

Fig. 2. Ion-mobility spectrometry profile

1The discrete B-splines tend to the original B-splines when n → ∞ [5].
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a fast digital filter to compute their correlations with a given
signal [7].

(iii) We dare to deploy the discrete B-splines shifted by a
minute interval as analyzing components of which weighted
sum is to approximate a given profile even though we risk
numerical instability in the approximation process due to the
almost linear dependency among the overcrowding compo-
nents. Otherwise, the algorithm would fall back to the slow
sequential search for an unknown number of arrival times. The
weights are constrained to be non-negative since ion counts
cannot be negative numbers.

(iv) The other unknown parameter n, which represents how
widely the arrival times distribute, is sought exhaustively.
Since the above approximation process is rather simple and
suitable for hardware implementation, we can try approxima-
tions with various values of n in parallel to find its best value.
Among the values of n that result in good approximations
with sufficiently small errors, we shall choose the one giving
a sparse approximation in the sense that the approximation
comprises few discrete B-splines with large weights.

The algorithm is a sort of sparse approximation method
that arose from this particular application field. It works
empirically fine. A proper formulation within the general
theory of sparse approximation is yet to be established.

II. SUMMARY OF DISCRETE B-SPLINES

The B-spline of order m is defined as the m-fold con-
volution integral of a rectangle function [4]. It tends to the
Gaussian distribution at the limit m → ∞ by the central limit
theorem. The discrete B-spline to be used in this paper is
defined recursively by

bm[k] = (bm−1 ∗ b1)[k] =
∞∑

l=−∞

bm−1[k − l]b1[l] (1)

as the m-fold discrete convolution of a sampled rectangle

b1[k] =
{

1, k = 0, 1, 2, · · · , n − 1
0, otherwise. (2)

It tends to the original B-spline at the limit n → ∞ [5]. The
z-transform of bm[·] is

Bm(z) =
∞∑

k=−∞

bm[k]z−k =
(

1 − z−n

1 − z−1

)m

. (3)

The inner product or correlation of two discrete B-splines
bm[·−r] and bm[·−l] can be rearranged in the form of discrete
convolution

〈bm[· − r], bm[· − l]〉 =
∞∑

k=−∞

bm[k − r]bm[k − l]

=
∞∑

k=−∞

bm[k]bm[−(l − r − k)]

=
∞∑

k=−∞

bm[k]b̃m[l − r − k]

= (bm ∗ b̃m)[l − r],

where we have set b̃m[·] = bm[−·]. By its z-transform

Bm(z)Bm(z−1)zl−r

=
(

1 − z−n

1 − z−1

)m (
1 − zn

1 − z

)m

zl−r

=
(

1 − z−n

1 − z−1

)m (
1 − z−n

1 − z−1

)m

z(n−1)m+l−r

=
(

1 − z−n

1 − z−1

)2m

zm(n−1)+l−r,

we know that

〈bm[· − r], bm[· − l]〉 = b2m[l − r + m(n − 1)]. (4)

Given weighting coefficients c[·] of which z-transform is

C(z) =
∞∑

l=−∞

c[l]z−l,

we can express the weighted sum of discrete B-splines bm[·−l]
in the form of a discrete convolution

q[k] =
∞∑

l=−∞

c[l]bm[k − l] = (c ∗ bm)[k] (5)

of which the representation by the transfer functions is

C(z)Bm(z) = C(z)
(

1 − z−n

1 − z−1

)m
. (6)

So we can generate q[·] as the output of a digital filter
having the transfer function

(
1−z−n

1−z−1

)m
for the input c[·].

This digital filter can be implemented in two steps: the m-th
order accumulation

(
1

1−z−1

)m
and the m-th order difference

(1 − z−n)m. Although the accumulation may overflow in the
first step, it has been known that the final output q[·] stays
correct as long as we use the integer arithmetic in the 2’s
complement representation of which bit-length is long enough
to accommodate the theoretical range of q[·] [6]. Since the
amplitude of the final output q[·] is bounded by

sup
k

|q[k]| ≤ sup
l

|c[l]|
∞∑

k=−∞

|bm[k]|

= sup
l

|c[l]|
∞∑

k=−∞

bm[k]

= sup
l

|c[l]|B(1)

= sup
l

|c[l]|nm, (7)

it cannot be magnified more than nm times the amplitude of
the input c[·]. So it suffices for correct computation to add
guard bits of the length m⌈log2 n⌉.

For a given profile p[·], let

P (z) =
∞∑

k=−∞

p[k]z−k.
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Then its inner products or correlations with bm[· − l] can be
represented in the form of discrete convolution

〈p[·], bm[· − l]〉 =
∞∑

k=−∞

p[k]bm[k − l] (8)

=
∞∑

k=−∞

p[k]bm[−(l − k)]

= (p ∗ b̃m)[l] (9)

of which the representation by the transfer functions is

P (z)Bm(z−1)zl = P (z)
(

1 − zn

1 − z

)m
zl

= P (z)
(

1 − z−n

1 − z−1

)m
z(n−1)m+l. (10)

So we can compute the inner products by inputting p[·] to
a digital filter having the transfer function

(
1−z−n

1−z−1

)m
and

sampling its output at (n − 1)m + l. This transfer function
is the same as the one for generating weighted sums and can
also be implemented efficiently in the two steps.

III. ALGORITHM

We have to approximate a given profile p[·] by a weighted
sum of the discrete B-splines bm[· − l] deployed by the most
minute interval 1 under the constraint that the weights should
be non-negative.

A. Digital filter to compute inner products 〈p[·], bm[· − l]〉
The inner products 〈p[·], bm[· − l]〉 of a given profile p[·] and

the discrete B-splines bm[·− l] should usually be evaluated by
the standard multiply-and-add architecture according to their
definition (8). But, by virtue of (9) and (10), we can do the
same only by using the digital filter depicted in Fig. 3.

The first half of the filter in Fig. 3 represents the m-fold
accumulation free from the parameter n so that this part has
to be operated just once for a given profile. We can evaluate
the inner product for different n only by operating the second
half. Its computational cost is almost only m subtractions per
an inner product on the average.

The mutual inner products 〈bm[· − r], bm[· − l]〉 among the
discrete B-splines can be precomputed by (4) and stored in a
data table.

B. Non-negative least-square approximation
From the inner products, we are to determine the weighting

coefficients c[·] so that the weighted sum

q[k] =
L−1∑
l=0

c[l]bm[k − l] (11)

Fig. 3. Digital filter to compute 〈p[·], bm[· − l]〉 at (n− 1)m+ l from p[k]

of the discrete B-splines bm[· − l] approximate the profile p[·]
best in the sense

E = 〈p[·] − q[·], p[·] − q[·]〉
=

∑
k

(p[k] − q[k])2 −→ min. (12)

Such coefficients can be determined by solving the normal
linear equations

L−1∑
l=0

c[l] 〈bm[· − r], bm[· − l]〉 = 〈p[·], bm[· − l]〉 ,

r = 0, 1, 2, ..., L − 1. (13)

The resulting coefficients c[·] may be negative whereas they
should be constrained to be non-negative.

The least-square approximation under this constraint can be
solved by overwriting the negative coefficients by zero, dis-
carding the coefficients and corresponding discrete B-splines
from the linear equations, and solving the linear equations
repeatedly until all the coefficients get non-negative [8].

Although all the four arithmetic operations in the floating
point representation are required to solve the linear equations,
this process is not so slow since the discrete B-splines are
locally supported to make the equations banded and because
the number of involved discrete B-splines decreases during the
iterations.

The only and major concern is numerical instability in
solving the linear equations. The minutely shifted discrete B-
splines are so crowded that they are almost linearly dependent.
The numerically obtained initial approximation result is quite
imprecise despite the mathematical fact that the initial approx-
imation must theoretically be an exact interpolation having no
errors at all. It has been empirically observed that neighboring
discrete B-splines are likely to have coefficients of opposite
signs. Since the discrete B-splines with negative coefficients
should be discarded, the discrete B-splines get sparser in the
next iteration. The non-negativity constraint happened to bring
in such a nice side effect. In that way, all the numerical
experiments up to now with test data taken from real profiles
finished successfully at the end.

C. Evaluation of mean square error

It follows from (5) that the approximate profile q[·] can be
computed from c[·] by the digital filter depicted in Fig. 4. The
mean square error is evaluated from the output q[·] and the
original profile p[·] by

E1 =

√∑
k(p[k] − q[k])2∑

k(p[k])2
. (14)

Fig. 4. Digital filter to compute q[k] from c[k]
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D. Evaluation of sparsity

Among a number of approximations obtained by the above
processes A, B and C for various values of n, we choose the
best one that has sufficiently small errors and is composed of
few discrete B-splines with large weights.

In the case that the mean square error E2 is very small,
the absolute difference

∑
k |p[k] − q[k]| is also small and the

sums
∑

k p[k] and
∑

k q[k] of the original and approximate
profiles are close to each other because both p[·] and q[·] are
non-negative. In this case, the modified coefficients nmc[l] for
the discrete B-splines 1

nm bm[· − l] normalized by its sum∑
k bm[k − l] = nm satisfy

q[k] =
L−1∑
l=0

(nm c[l])
(

1
nm

bm[k − l]
)

(15)

and
L−1∑
l=0

nmc[l] =
∑

k

q[k] ≈
∑

k

p[k] = constant. (16)

In this situation, sparsity in the sense that the approximation
q[·] should comprise few large portions is translated into that
the coefficients nmc[l] should comprise few and large ones
because

∑
l n

mc[l] is constant and nmc[l] is non-negative. An
index to evaluate this sparsity is

E2 =

√√√√K−1∑
l=0

(nmc[l])2. (17)

We take the sparsest approximation giving the largest E2 out
of the good approximations having the mean-square error E1

smaller than a threshold among various approximations for
different values of n.

IV. NUMERICAL RESULT

The algorithm was applied to test data taken from real
profiles. Figure 5 shows approximations of a profile within a
short window of 128 sampling points. The order of the discrete
B-splines is fixed as m = 4. The original profile p[·] is plotted
in black, its approximations q[·] for various n is in red. The
green curves represent the discrete B-splines weighted by their
coefficients to compose the approximation.

The cases for n ≤ 12 cleared the precision bar conditioned
by E1 < 0.1. The case n = 12 gave the largest E2 to be
selected as the sparsest among the precise approximations.

Figure 6 shows a whole profile. The best n gets larger as the
time passes so that it was sought within each short window.
The best n is 12 for the two left hills and 14 for the right one.

V. CONCLUSIONS

The discrete B-splines were employed to construct an al-
gorithm for the analysis of ion-mobility spectrometry profiles.
This application field requested modification of the standard
B-spline approximations in two aspects: the deployment of
B-splines by a minute shift interval and the non-negativity
constraint on coefficients. The former put us in danger of
numerical instability and the latter pulled us out of it.
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Fig. 5. Approximations of a partial sample profile

Fig. 6. Approximation of a whole sample profile

A next step is to come up with a single index to balance
the approximation error and the sparsity. We may probably
have to reformulate the problem within the general theory of
sparse approximation. Before a large scale test of the algorithm
against various profile data, we should see by simulations
whether an artificial profile built up of discrete B-splines is
identified in the noise-free and noisy cases.
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