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Abstract—Compressed sensing has the possibility to signif-
icantly decrease the power consumption of wireless medical
devices. The photoplethysmogram (PPG) is a device which
can greatly benefit from compressed sensing due to the large
amount of power needed to capture data. The aim of this paper
is to determine if the least absolute shrinkage and selection
operator (LASSO) optimization algorithm is the best approach
for reconstructing a compressively sampled PPG across varying
physiological states. The results show that LASSO reconstruction
approaches, but does not surpass, the reliability of constrained
optimization.

I. INTRODUCTION

Compressed sensing is the process of sampling a sparse
signal at a rate significantly lower the Nyquist rate [1]. The
Nyquist rate is defined as twice the highest frequency of the
measured signal. Compressed sensing involves reconstructing
a sample vector of length /N from a set of M random measure-
ments, where M is much less than N. These M measurements
are captured using a randomly generated sensing matrix, which
is used to reconstruct the sample vector by estimating the
coefficients in sparse domain of the signal being measured.

In 2006, the seminal papers on compressed sensing were
published by Candes and Donoho [2]-[5]. These papers dis-
cuss the mathematical principles behind compressed sensing.
They have shown that a signal has a very high probability
of being exactly reconstructed when the signal has a known
sparse domain and is measured using a sensing matrix that is
incoherent to the basis functions of the signal’s sparse domain.

Previous work has shown the success of the least absolute
shrinkage and selection operator (LASSO) optimization algo-
rithm for reconstruction of compressively sensed physiological
signals [6]. More specifically, the work from Beheti introduces
the use of a weighted LASSO technique for reconstructing a
compressively sensed photoplethysmogram (PPG), but does
not compare it to constrained ¢; norm reconstruction [7], [8].

LASSO allows for a balance between minimizing the norm
of the sparse domain and maintaining measurement accuracy
by adhering to the constraints imposed by the measurement
vector. This trade-off is determined by the LASSO penalty
parameter, which is a constant that must be chosen before
implementation [9]. For this reason, LASSO is a popular
reconstruction method for the compressed sensing of signals
which contain measurement noise.
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The PPG is used in many medical devices to attain blood
oxygenation levels, heart rate, and other cardiac intervals. To
estimate the blood oxygenation level (SpO2), the ratio between
the root mean square (RMS) of PPG signals captured at two
separate wavelengths can be used [8]. This paper quantita-
tively shows how different LASSO penalty parameters affect
important aspects of the PPG such as the root mean square
(RMS) and temporal information change when compared to
constrained optimization. The purpose of this paper is to
determine if LASSO provides any benefit over constrained
optimization for reconstructing the PPG across a range of
physiological states.

Section II includes a mathematical introduction to com-
pressed sensing, an explanation of different reconstruction
methods, and the metrics used for determining the accuracy
of reconstruction. In Section III, results are presented and
analyzed. Finally, Section IV provides a short summary and
concluding remarks.

II. THEORY
A. Overview of Compressed Sensing

Compressed sensing is the process of utilizing only M
measurements to reconstruct a discrete signal of length N,
where M < N. The level of compression achieved can be
represented by the under sampling ratio (USR), which is NV
divided by M. For compressed sensing to work, the sample
vector X must be sparse in some domain [10]. By multiplying
X by the discrete cosine matrix ¥, the PPG is shown to be
sparse in the discrete cosine domain (Fig. 1). This process is
shown in (1).

¥.X=5 ey

Given that € € RY is sparse it is multiplied by a sensing
matrix, A € RM*N_ This results in the measurement vector
¥ € RM, as shown in (2).

A-X=Yy @

The only requirement for the sensing matrix is that it is
incoherent to the basis functions of the sparse domain, .
Normally, this is achievable by populating A with values
generated from a random distribution [10]. The sensing matrix
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Fig. 1. The sparsity of a 10 second (N = 1600) long PPG signal (a) is
shown in the discrete cosine domain (b).

used in this research is generated using an identity matrix,
which is an orthogonal set of impulse functions. The process
used for this is shown in (3), where random rows are removed
from an identity matrix to create A. This structure was chosen
so that not all samples in X are used to generate y.
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The process shown in (2), which uses both A and X to
generate y, forms an under-determined linear system which is
used as constraints during reconstruction.

B. Reconstruction

Typically, the reconstruction process for compressed sensing
can be defined as a convex optimization problem [2], [10].
Given the under-determined linear system in (2) and the matrix
transform that projects X onto a sparse basis shown in (1), the
optimization problem is defined as

min ||¥ - x|, subjecttoy = A -x. 4)
XERN

This will minimize the ¢; norm of the sparse coefficients,
while exactly adhering to constraints imposed by the mea-
surement vector and sensing matrix. This method, also called
constrained optimization, typically does not perform well
when in applications where measurement noise is present [9],
[10].

One method for accurately reconstructing a signal in the
presence of noise is least absolute shrinkage and selection
operator (LASSO) based optimization, shown in (5) [6]. By
adjusting the penalty parameter A, the amount of deviation

from (2) can be specified, allowing for a more robust overall
reconstruction for signals that contain noise [6], [9].

min {\|P - %[ + ||¥ — A-%[2} 5)
XERN

This approach can be expanded further by incorporating
a weighting vector for the sparse domain. The weighting
vector is generated using a priori information and can greatly
increase the accuracy of the reconstructed waveform. This
method can be used on any signal that has a typical or
characteristic set of coefficients in its sparse domain.

The results in this paper use the discrete cosine domain as
the sparse domain of the PPG. The weighting vector w for
the sparse domain used is generated in (6) from the average
sparse domain coefficients for the signal being captured. The
average sparse domain S can be found by averaging a set of
training signals together.

The larger the weighting coefficient, the smaller the re-
constructed sparse domain coefficient will be. The maximum
possible value of W is determined by o, a small constant.
When the average sparse coefficient is zero, the maximum
weighting is 1/0. By integrating the weighting vector into
constrained /1 norm optimization, (7) is defined.

i=0,1,-- ,N—1 (©6)

min || (W, (¥ -X))||; subjectto y = A -x 7

Similarly, a weighted LASSO minimization is formed in

(8).

min (] (W, (%) [+ |7~ A-%IB} ®

The results presented in Section III use the weighting

vector shown in (6) for both LASSO based reconstruction and
constrained #; norm optimization.

C. Error Metrics

Two very important measurements which can be extracted
from the PPG are the blood oxygenation level (SpO2), and
when used in conjunction with a synchronized ECG, the pulse
transit time. For this reason, two different metrics are used to
compare the accuracy of the reconstructed sample vector to
the original Nyquist sample vector, the change in RMS and
the change in the location of the PPG foot.

In order to show how reconstruction errors affect the esti-
mated SpO?2 levels, the percent change in RMS value is used.
This percentage is determined by normalizing the change in
RMS to the original signal’s RMS value, as shown in (9).

|[RMS(X) — RMS(%x)|
RMS(X)
Even small errors in the reconstructed frequency domain

can result in peak deformation and other temporal changes that
will not be apparent when only using (9). In fact, maintaining

RMSdiff =

©))
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Fig. 2. By locating the foot of the PTT (7's) and the QRS peak on the ECG
(TgRrs) the pulse transit time (P71"Ty) can be found.

the temporal accuracy of physiological signals is required for
many applications.

An important temporal feature of the PPG is the location of
the foot in each beat. By determining the interval between the
ECG QRS peak and the PPG foot, the pulse transit time (PTT)
can be estimated. Fig. 2 illustrates how the PTT is estimated
for a given beat and (10) shows how the normalized PTT
is calculated. A signal’s PTT is calculated by averaging the
PTT for each beat. It is important to note that the ECG was
not compressively sampled since it is used as a baseline to
determine how specific locations of the reconstruction differs
from the original signal.

|(Ty — Tors) — (Ty — Tors)|
Tf — TQ RS
Finally, in order to show how the penalty parameter affects

the time of reconstruction, the time it took to reconstruct 60
seconds of data was captured directly in MATLAB.

PTT; = (10)

III. RESULTS AND DISCUSSION

The physiological data sets used were attained under in-
formed consent in a protocol approved by the Rochester Insti-
tute of Technology Institutional Review Board for Protection
of Human Subjects. The Biopac MP36 (Biopack Systems, Inc.,
Goleta, CA) was used to capture synchronized ECG and ear
PPG at a sample rate of 50 kHz.

One minute measurements were captured at eleven different
activity levels to test how well each reconstruction method
performs across a range of physiological states. Before each
measurement was analyzed, it was decimated to a sample rate
of 160 Hz to more closely match the Nyquist sampling rate
found in physical systems. Each minute sample was split into
five sample vectors with an [NV of 1920 (a window size of 12
seconds) for compressed sensing.

To further increase the reliability of the results provided,
each metric is averaged across eleven activity levels and
four different random sensing matrices generated using (3).
The following tests were performed in MATLAB (R2012a)
using CVX, a package for specifying and solving convex
optimization problems [11], [12].

The results in Fig. 3 show that larger penalty parameters
correspond to a higher RMS error for a wide range of USRs.
A more detailed look at how the penalty parameter affects
the RMS accuracy for a specific USR is shown in Fig.
4. This more clearly shows how different LASSO penalty
parameters perform when compared to the constrained /; norm
reconstruction shown in (4).

When using constrained ¢; norm reconstruction, the average
RMS percent difference is 8% with a standard deviation of
1.7%. For penalty parameters below 0.003, the RMS percent
difference is less than 10% with an average standard deviation
of approximately 2.1%.

As discussed in Section II, analyzing the temporal accuracy
of a reconstructed physiological signal is very important. For
a USR of 16, the PTT foot error results are shown in Fig. 5
and show a higher error rate than the percent RMS difference;
this is due to the fact that the algorithm used to detect the foot
of the PPG is not perfectly robust in the presence of noise.

As the penalty parameter decreases, the standard deviation
and error rate approach that of the constrained ¢; norm
reconstruction. This is the same trend shown in the RMS error
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Fig. 3.  The difference in RMS for different LASSO penalty parameters

decreases as the penalty parameter decreases.
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Fig. 4. As the penalty parameters decreases at a USR of 16, the RMS

difference approaches the rate and variance of the constrained ¢; norm error
(on the left).
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Fig. 5. While the standard deviation of the PTT is higher than that of the
RMS difference, the general trend is the same at a USR of 16. As the penalty
parameter decreases, the accuracy increases.
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Fig. 6. Lower penalty parameters correspond to significantly higher recon-

struction times when compared to constrained ¢; norm reconstruction at a
USR of 16.

results. For penalty parameters below 0.001 the average error
rate is 11% with a standard deviation of 6%. While the smaller
penalty parameters perform just as well as the ¢; norm method
for both of these metrics, they do not perform any better. The
/1 norm method has an error rate of 10.35% with a standard
deviation of 6%.

Finally, the average reconstruction time for different penalty
parameters for a USR of 16 and a window size of 12 seconds
is shown in Fig. 6. As the penalty parameter becomes smaller,
the reconstruction time increases. While the overall increase
in reconstruction time is small, approximately 5 seconds, it
can become significant for larger window sizes.

When noise distorts the measurement vector ¥ in (2),
LASSO typically allows for a decrease in reconstruction
variability compared to constrained /1 norm reconstruction
[51, [9], [10]. The results presented herein utilize low noise
physiologic signals, which may explain why LASSO based
reconstruction performs as well, but not better than, /; norm
reconstruction.

IV. CONCLUSION

These results shown that a compressively sampled PPG can
be accurately reconstructed using both weighted LASSO re-

construction and weighted constrained ¢; norm reconstruction
across a range of physiological states (activity levels). Based
on a Nyquist sample rate of 160 Hz, compressed sensing of
the PPG can be achieved with a USR of 16 while maintaining
an overall error rate of approximately 10%, this corresponds
to an average sample rate of 10 Hz.

LASSO based reconstruction with penalty parameters below
0.001, is just as reliable and accurate as constrained #; norm
reconstruction. Given that it is also slower than the constrained
¢1 norm reconstruction, LASSO offers no quantitative befit for
the compressed sensing of the PPG.

Future research should compare LASSO based reconstruc-
tion to constrained ¢; norm reconstruction, on a physical
compressed sensing system, by measuring and reconstructing
physiological signals which contain noise that distort the
measurement vector. Additionally, the affect different sparse
domains have on the accuracy of reconstruction for the PPG
should be investigated.
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