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Abstract—Imaging mass spectrometry (IMS) is a technique
to visualize the molecular distributions from biological samples
without the need of chemical labels or antibodies. The underlying
data is taken from a mass spectrometer that ionizes the sample
on spots on a grid of a certain size. Mathematical postprocessing
methods has been investigated twice for better visualization
but also for reducing the huge amount of data. We propose
a first model that applies compressed sensing to reduce the
number of measurements needed in IMS. At the same time we
apply peak picking in spectra using the `1-norm and denoising
on the m{z-images via the TV-norm which are both general
procedures of mass spectrometry data postprocessing, but always
done separately and not simultaneous. This is realized by using
a hybrid regularization approach for a sparse reconstruction of
both the spectra and the images. We show reconstruction results
for a given rat brain dataset in spectral and spatial domain.

I. INTRODUCTION

A. Mass spectrometry

Mass spectrometry is a technique of analytical chemistry for
the determination of the elemental composition of a biolog-
ical or chemical sample. The way this task is accomplished
is through experimental measurement of the mass-to-charge
ratio of gas-phase ions produced from molecules from the
underlying analyte.

As an example for a mass spectrometer we will now shortly
describe the main principles of the so-called matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometer. In MALDI mass spectrometry the sample or
compound to be analyzed is dissolved in a so-called matrix
with crystallized molecules. Next, the ionization of the sample
is triggered by intense laser pulses over a short duration. The
ions are then accelerated by an electrostatic field. Since the
velocity of the ions depends on the mass-to-charge ratio it is
possible to measure the time-of-flight (TOF) to find the mass-
to-charge ratio.

Most applications of mass spectrometry can be found in
biology and medicine. But generally, mass spectrometry is not
limited to the analysis of organic molecules. In principle any
ionizable element can be analyzed with this technique.

B. Imaging mass spectrometry

The imaging mass spectrometry (IMS) is a technique used
in mass spectrometry to visualize the spatial distribution of
e.g. proteins or other chemical compounds. Given a thin

sample, usually a tissue section, in MALDI-IMS mass spectra
at discrete spatial points across the sample surface are acquired
independently, providing a so-called datacube or hyperspectral
image, with a mass spectrum measured at each pixel [1], see
Figure 1. A mass spectrum represents the relative abundances
of ionizable molecules with various mass-to-charge ratios
(m{z), ranging for MALDI-IMS from several hundred up
to a few tens of thousands m{z. A channel of a MALDI
datacube corresponding to an m{z-value is called an m{z- or
molecular image and expresses the relative spatial abundances
of a molecular ion with this m{z-value. MALDI-IMS data
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Fig. 1. Mass spectrometry data on an example of a rat brain tissue, taken
from [2]. Each spot on the x, y-grid on the sample in (B) corresponds to one
spectrum (A). Fixing an m{z-value yields to m{z-images representing the
spatial distribution of the corresponding m{z-value, (C) and (D).

is large with a typical dataset comprising 10, 000 - 100, 000
spectra where an individual spectrum represents intensities
measured at 10, 000 - 25, 000 m{z-bins.

In order to reduce the number of spectra required for
reconstructing the hyperspectral IMS datacube we will make
use of the compressed sensing (CS) idea: Instead of measuring
spectra independently for each pixel we assume a setup that
enables us to acquire some multiple sets of spectra at different
points on the data which are then each summed up to a
measurement-mean spectrum. Each measurement-mean spec-
trum then corresponds to one measurement and we would like
to reconstruct the full dataset based on these measurements.

C. Compressed sensing and its applications to hyperspectral
imaging

The combination of classical Shannon-Nyquist sampling
and compression steps is one of the main ideas of CS. It turns
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out that it is possible to represent or reconstruct given data
with sampling rates much lower than the Nyquist rate [3], [4].
Mathematically spoken it means that given a signal, we do
not need to acquire n periodic samples to get the discretized
signal x P Rn. Instead, it suffices to take m ! n linear
measurements yk P R using linear test functions ϕk P Rn,
i.e. yk “ xϕk, xy ` zk with some additive noise zk P R. In
matrix notation this reads

y “ Φx` z,

where Φ is called the measurement matrix whose rows are
filled with the linear functionals ϕk. Using the a-priori infor-
mation that the signal x is S-sparse in a basis Ψ, i.e. x “ Ψλ
with }λ}`0 :“ |supppλq| ď S ! n, we are then interested in
recovering the data x from only few taken measurements y.
This can, e.g., be done with the basis pursuit approach, i.e. by
solving the following convex optimization problem

argmin
λPRn

}λ}1 s.t. }y ´ ΦΨλ}2 ď ε. (1)

One of the many applications of CS can be found in hyper-
spectral imaging. A hardware realization of CS in that situation
applying the single-pixel camera [5] has been studied in, for
example, [6]. From the theoretical point of view mathematical
models has been studied for CS reconstruction under certain
priors [7]–[9]. Suppose that we have hyperspectral datacube
X P Rnxˆnyˆc whereas nxˆny denotes the spatial resolution
of each image and c the number of channels. By concatenating
each image as a vector we have X P Rnˆc with n :“ nx ¨ny .
In the context of CS one aims to take m ! n measurements
for each spectral channel 1 ď j ď c [8], [9] and to formulate
a reconstruction strategy based on hyperspectral data priors.
For example in [9] the authors assume the hyperspectral
datacube to have low rank and piecewise constant channel
images. Therefore the following convex optimization problem
is presented

argmin
X̃PRnˆc

}X̃}˚ ` λ
c
ÿ

j“1

}X̃j}TV s.t. }Y ´ ΦX̃}F ď ε, (2)

where } ¨ }˚ denotes the nuclear norm (i.e. the sum of the
singular values), } ¨ }TV denotes the TV norm and the linear
operator Φ is a measurement matrix as described above.

Another application of CS in hyperspectral imaging is the
idea of calculating a compressed matrix factorization or a
(blind) source separation of the data X P Rnˆc, i.e. X “

SHT , where S P Rnˆρ is a so called source matrix, H P Rcˆρ
is a mixing matrix and ρ denotes the number of sources in the
data which are supposed to be known. This model has been
studied in the case of known mixing parameters H of the data
X in [10] and with both matrices to be unknown in [7]. In
case of the matrix H to be known and under the assumption
that the columns of S are sparse or compressible in a basis
Ψ, the problem being solved in [10] becomes

argmin
λPRρn

}λ}1 s.t. }Y ´ ΦH̄Ψλ}2 ď ε, (3)

where H̄ “ HbIn and b denotes the usual matrix Kronecker
product and In the n ˆ n identity matrix. The authors in
[10] also studied the case where the `1-norm in (3) is re-
placed by the TV-norm with respect to the columns of S,
i.e.

řρ
j“1 }Sj}TV . However, as a result of (3) one has a

decomposition of the data X as in two matrices S and H
where the columns of S contain of the ρ most representative
images of the hyperspectral datacube and those of H of the
corresponding pseudo spectra.

In this work we investigate a hybrid reconstruction model
for hyperspectral data similar to (2) and (3), but with special
motivation for imaging mass spectrometry data X P Rnˆc` and
formulated as a Tikhonov functional:

argmin
X̃PRnˆc

`

1

2
}Y ´DΦ,ΨpX̃q}F ` α

c
ÿ

j“1

}X̃j}TV ` β}X̃}1. (4)

Furthermore, we are interested in reconstructing the full
dataset X P Rnˆc` while extracting its main features.

Since we know a-priori that mass spectra in IMS are
typically nearly sparse or compressible we use the `1-norm as
one regularization term. The second, i.e. the TV-term, comes
from the fact that the m{z-images are supposed to have sparse
image gradients.

II. COMPRESSED SENSING MODEL FOR IMAGING MASS
SPECTROMETRY

A. Imaging mass spectrometry data

IMS data is a hyperspectral datacube X P Rnxˆnyˆc` with c
channels and m{z-images Xp¨,¨;kq P R

nxˆny
` for k “ 1, . . . , c.

By concatenating each image as a vector, the hyperspectral
data becomes a matrix X P Rnˆc` where n :“ nx ¨ ny .

B. The compressed sensing process

A part of the measurement process in IMS consists of the
ionization of the given sample. In MALDI-MS, for instance,
the tissue is ionized by a laser beam, which shoots on each of
the n pixel of a predefined grid. This yields n independently
measured spectra. In order to reduce the number of spectra
needed for the reconstruction we make use of CS [4], [11].

In the context of compressed sensing, each entry yij of
the measurement vectors yi P Rc for i “ 1, . . . ,m and j “
1, . . . , c is the result of an inner product between the data
X P Rnˆc` and a test function ϕi P Rn with components ϕik,
i.e.

yij “ xϕi, Xp¨,jqy. (5)

The results yi for i “ 1, . . . ,m are in our IMS context so
called measurement-mean spectra since they are calculated by
the mean intensities on each channel. This can be seen by
rewriting (5) as

yTi “ ϕTi X “

n
ÿ

k“1

ϕikXpk,¨q, (6)

which directly shows that the measurement vectors yTi are
linear combinations of the original spectra Xpk,¨q.
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We are looking for a reconstruction of the data X based on
m measurement-mean spectra, each measured by one linear
function ϕi. In matrix form (5) becomes

Y “ ΦX P Rmˆc` , (7)

where Φ P Rmˆn is the measurement matrix. By incorporating
noise Z P Rmˆc` that arises during the mass spectrometry
measurement process, (7) becomes

Y “ ΦX ` Z P Rmˆc` , (8)

at which }Z}F ď ε. By this we explicitly assume to have
inherent Gaussian noise in the data and we will keep this for
the rest of our analysis.

C. First assumption: compressible spectra

Within IMS data acquisition process for each pixel on the
sample we gain a mass spectrum whose entries can be seen
as positive real numbers, i.e. Xpk,¨q P Rc`, k “ 1, . . . , n. As
our first assumption we take into account that we know that
these spectra are sparse or compressible in spectral domain.
Therefore we assume that these spectra are well presented
by a suitable choice of functions ψi P Rc` for i “ 1, . . . , c.
More precisely this means that there exists a matrix Ψ P Rcˆc`

such that for each spectrum Xpk,¨q there is a coefficient vector
λk P Rc` with }λk}0 ! c, such that XT

pk,¨q “ Ψλk. In matrix
form this sparsity property can be written as

XT “ ΨΛ, (9)

where Λ P Rcˆn` is the coefficient matrix or feature matrix,
see Figure 2. In light of the sparse spectra, our aim should
be to minimize the columns Λp¨,iq of Λ with respect to the l0
”norm”, i.e.

n
ÿ

i“1

}Λp¨,iq}0. (10)

Putting (8) and (9) together leads to

Y “ ΦΛTΨT ` Z. (11)

D. Second assumption: sparse image gradients

By keeping one m{z-value i0 P t1, . . . , cu fixed we get an
m{z-image Xp¨,i0q P Rn` (one column of the data X) that
represents the spatial distribution of the fixed mass m0 in
the measured biological sample. Another a priori knowledge
takes into account the sparsity of these m{z-images with
respect to their gradient. Besides this, we are also aware of
the large variance of noise variance in each m{z-image. To
handle both, we want to make use of the total variation (TV)
model introduced by Rudin, Osher and Fatemi [12]. So as a
second statement, we want each m{z-image to be minimized
with respect to its TV semi-norm. By taking into account the
coefficient matrix Λ in (9), it arises to minimize its rows Λpi,¨q
for i “ 1, . . . , c since each of them corresponds to an m{z-
image, i.e.

c
ÿ

i“1

}Λpi,¨q}TV . (12)
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Fig. 2. Illustration of peak picking approach in mass spectrometry. Instead
of finding a minimizer Λ̃ and multiply it with a convolution operator Ψ, we
aim to recover the features Λ̃. Dashed line (- - -): Reconstruction of the i-th
spectrum, i.e. X̃T

p¨,iq
“ pΨΛ̃qp¨,iq. Solid line (—): Only the main features of

the i-th spectrum Λ̃p¨,iq, i.e. the main peaks, are extracted.

As in the first assumption and also explained in Figure 2, we
aim to extract the main features such as the main peaks in the
data. For incorporating also the spatial domain information in
each channel, we again only use the coefficient matrix in (12).

E. The final model

Putting it all together, we are now able to formulate our
model for CS in IMS. Since minimizing with respect to the `0
”norm” is NP-hard, it is common to obviate this by replacing
it with the `1-norm. Our minimization problem then finally
becomes

argmin
ΛPRcˆn

`

1

2
}Y ´ ΦΛTΨT }2F ` α

c
ÿ

i“1

}Λpi,¨q}TV ` β
n
ÿ

i“1

}Λp¨,iq}1.

(13)

III. NUMERICAL RESULTS

The algorithm we are using to solve (13) is based on the
parallelizable primal-dual splitting algorithm presented in [13].

The test data X P Rnˆc` is made of a well-studied rat brain
coronal section [2] (see Figure 1) which consists of c “ 2, 000
channels with m{z-images of spatial resolution 121 ˆ 202
and therefore n “ 24, 442 pixel. The spectra were normalized
using total ion count (TIC) normalization which is nothing else
than a division by the `1-norm of each spectrum. Furthermore,
they were baseline-corrected using the TopHat algorithm with
a minimal baseline with set to 10%. We assume the mass
spectra to be sparse with respect to shifted Gaussians [14]

ψkpxq “
1

π1{4σ1{2
exp

ˆ

´
px´ kq2

2σ2

˙

. (14)

In (14), the variance should be set data dependent [15]. The
measurement matrix Φ is randomly filled with numbers from
an i.i.d. Gaussian distribution with zero mean and variance
one. For our results we have further set the regularization
parameters in (13) by hand as α “ 1.6 and β “ 1.4 and
applied 100 iterations.

First we present the mean spectrum, i.e. the sum over all
pixel spectra Λpi,¨q for i “ 1, . . . , n of the rat brain data
as well as the mean spectrum of the reconstructed datacube,
see Figure 4. The reconstruction is based on 40% taken
measurements. We can see is that the main peaks from the
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Fig. 3. Reconstruction results of four m{z-images based on 40% taken measurements of spectra.
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Fig. 4. Mean spectrum from the rat brain dataset (black) and its compressed
reconstruction (blue), based on 40% taken measurements. As part of the
reconstruction, also main peaks within the spectrum were detected (triangles).

original mean spectrum are recovered while the rest of the
m{z-values are set to zero. At second we show four different
m{z-images which all belong to a peak in the mean spectrum
in Figure 4. We clearly see the influence of both the TV
and the `1 penalty term. Where there are regions of high
intensity pixels, total varations effects smoothing those ones
while preserving the edges. In addition we see that due to
`1 minimization other non-high intensity pixels were set to
(nearly) zero.

IV. CONCLUSION

We have proposed a first CS model for imaging mass
spectrometry. While reconstructing the data from fewer mea-
surements we apply peak picking in mass spectra as well
as TV-denoising on the m{z-images at the same time. Our
results look promising and motivates for further research in
this direction. Future work might be done by replacing the
Gaussian noise model with a Poisson statistics approach which
is supposed to be more suitable for MALDI-TOF spectrometry
[15].
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