
Variation and approximation
for Mellin-type operators

Laura Angeloni
Dipartimento di Matematica e Informatica
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Abstract—Mellin analysis is of extreme importance in appro-
ximation theory, also for its wide applications: among them, for
example, it is connected with problems of Signal Analysis, such as
the Exponential Sampling. Here we study a family of Mellin-type
integral operators defined as

(Twf)(s) =

∫
RN+

Kw(t)f(st)
dt

〈t〉 , s ∈ RN
+ , w > 0, (I)

where {Kw}w>0 are (essentially) bounded approximate identities,
〈t〉 :=

∏N

i=1
ti, t = (t1, . . . , tN ) ∈ RN

+ , and f : RN
+ → R is a

function of bounded ϕ−variation. We use a new concept of multi-
dimensional ϕ−variation inspired by the Tonelli approach, which
preserves some of the main properties of the classical variation.
For the family of operators (I), besides several estimates and a
result of approximation for the ϕ−modulus of smoothness, the
main convergence result that we obtain proves that

lim
w→+∞

V ϕ[µ(Twf − f)] = 0,

for some µ > 0, provided that f is ϕ−absolutely continuous.
Moreover, the problem of the rate of approximation is studied,
taking also into consideration the particular case of Fejér-type
kernels.

I. INTRODUCTION

An important topic in approximation theory is the study
of convergence of classes of integral operators in the frame of
BV−spaces, namely spaces of functions of bounded variation.
This problem was faced in the literature from several points
of view, using different families of operators and different
notions of variation, such as the classical variation ([4]), the
distributional variation ([7]), the Cesari variation ([16]) or the
Musielak-Orlicz ϕ−variation ([26], [15], [24], [28], [13], [17],
[5]). An important direction of this research is the multidimen-
sional case, in particular in view of the application of such
results in several fields, such as image reconstruction. Results
in this sense can be found, for example, in [10], [4] in the case
of Tonelli variation and in [6], where the authors introduce
a new multidimensional concept of ϕ−variation and give
approximation results for functions of bounded ϕ−variation
by means of the classical convolution integral operators. The
nonlinear case was explored in [3].

An interesting development of the theory is the case
of Mellin-type integral operators. Mellin operators are well
known and widely used in approximation theory (see, e.g.,

[23], [19]), also because of their important applications in
various fields, for example in Signal Processing. Indeed,
Mellin analysis is strictly connected to Signal Analysis, in
particular to the Exponential Sampling. A seminal paper in
this sense is [20], where the authors establish a Sampling
Theorem in which the samples are not equally spaced, as in
the classical Shannon Sampling Theorem, but exponentially
spaced, by means of Mellin transform methods. This theory
has important applications, for example in optical physics
and engineering (see, e.g., [22], [18]), in problems in which
information accumulates near time t = 0. With this respect, to
develop a theory about Mellin-type operators becomes useful
and interesting. Results in this sense can be also found, for
example, in [11], [12].

Here we consider a family of Mellin-type integral operators
of the form

(Twf)(s) =
∫

RN+
Kw(t)f(st)

dt

〈t〉
, s ∈ RN+ , w > 0 (I)

and we develop an approximation theory in the frame of
BV−spaces. In particular, f : RN+ → R will be a function of
bounded ϕ−variation on RN+ and {Kw}w>0 will be a family
of (essentially) bounded approximate identities (see Section
IV). Here ϕ is a convex ϕ−function (see Section II) such that
u−1ϕ(u) → 0 as u → 0+. The above operators (I) allow
us to obtain, as particular cases, several classes of integral
operators well-known and used in approximation theory, such
as, for example, the moment-type or average operators, the
Gauss-Weierstrass-type operators and others.

The new multidimensional concept of variation that we will
use is inspired to the Tonelli approach ([29]) (see also [27] and
[30]). Such concept of variation was introduced in [8], and it
was adapted to the setting of RN+ from the multidimensional
ϕ−variation defined in [6] in the case of RN endowed with the
Lebesgue measure. Indeed, in order to treat the Mellin case, it
is natural to frame the theory in RN+ endowed with the Haar
measure µ(A) :=

∫
A
〈t〉−1 dt, where A is a Borel subset of

RN+ and 〈t〉 :=
N∏
i=1

ti, t = (t1, . . . , tN ) ∈ RN+ . We recall that,

in the case of the Lebesgue measure, similar approximation
results were obtained in [2], [9], while the one-dimensional
case was explored in [15] and [14] (nonlinear case).
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In order to get convergence of the family {Twf}w>0 to f ,
a crucial tool is to prove that

lim
δ→0+

ω(f, δ) = 0, (1)

where ω(f, δ) denotes the modulus of smoothness of f . It is
well known that (1) holds if and only if f is absolutely contin-
uous working with the classical (Jordan or Tonelli) variation
(see, e.g., [21], [10], [4]). On the contrary, dealing with the
ϕ−variation, due to the lack of an integral representation of
ϕ−variation in terms of ϕ−absolute continuity, the result is no
more trivial. In particular, working with the Musielak-Orlicz
ϕ−variation, the result can be obtaind by means of a direct
construction (see, e.g., [26], [5]). In the multidimensional
setting, the situation becomes more delicate. The result was
obtaind in [8] where, through an approximation technique by
means of step-type functions, we proved that

lim
δ→0+

ωϕ(λf, δ) = 0, (2)

for some λ > 0, provided that the function f is ϕ−absolutely
continuous. Here ωϕ(λf, δ) := sup|1−t|≤δ V ϕ[λ(τtf − f)]
(τtf(s) = f(st), s, t ∈ RN+ is the dilation operator and 1 is
the unit vector of RN+ ) represents the natural reformulation of
the classical modulus of smoothness in terms of ϕ−variation
(see, e.g., [25], [13]). The above result proves that the situation
is analogous to the one-dimensional case (see [15], [14]) and
to the case of the Lebesgue measure (see, e.g., [1], [2]).

In this paper we develop a new theory about convergence
and rate of approximation for the operators (I). In particular we
first obtain several estimates for {Twf}w>0. Then, by means
of such results and using (2), we are able to prove the main
convergence theorem, which states that there exists a constant
µ > 0 such that

lim
w→+∞

V ϕ[µ(Twf − f)] = 0,

whenever f ∈ ACϕ(RN+ ) (the space of ϕ−absolutely continu-
ous functions). Introducing suitable Lipschitz classes, we also
study the problem of the rate of approximation. Moreover, in
the particular case of Fejér-type kernels, we obtain that all the
assumptions for the rate of approximation are implied by the
classical condition that the absolute moments of order α of
the kernels are finite.

We finally point out that the case of the classical variation
can be also treated, by using a direct approach: indeed, taking
the identity function instead of the ϕ−function ϕ, it is possible
to obtain a new multidimensional version of the classical
Jordan variation in the sense of Tonelli for functions defined
on RN+ equipped with the logarithmic measure.

II. NOTATIONS AND DEFINITIONS

We denote by Φ the class of all the functions ϕ such that
1) ϕ is a convex ϕ−function, where a ϕ−function is a

nondecreasing continuous function ϕ : R+
0 → R+

0

such that ϕ(0) = 0, ϕ(u) > 0 for u > 0 and
limu→+∞ ϕ(u) = +∞;

2) u−1ϕ(u)→ 0 as u→ 0+.

From now on we will assume that ϕ ∈ Φ.
Given f : RN+ → R and x = (x1, . . . , xN ) ∈ RN+ , N ∈ N,

if we are interested in particular in the j−th coordinate, j =
1, . . . , N , we will write

x′j = (x1, . . . , xj−1, xj+1, . . . , xN ) ∈ RN−1
+ ,

so that x = (x′j , xj) and f(x) = f(x′j , xj). For a fixed

interval I =
N∏
i=1

[ai, bi], we will denote by [a′j , b
′
j ] the

(N − 1)−dimensional interval obtained deleting by I the j−th
coordinate, so that

I = [a′j , b
′
j ]× [aj , bj ].

Moreover, given two vectors s, t ∈ RN+ , we put st =
(s1t1, . . . , sN tN ).

In order to define the multidimensional ϕ−variation, the
first step is to compute the Musielak-Orlicz ϕ−variation of the
j−th section of f , i.e., V ϕ[aj ,bj ][f(x′j , ·)], and then to consider
the (N − 1)−dimensional integrals

Φϕj (f, I) :=
∫ b′j

a′
j

V ϕ[aj ,bj ][f(x′j , ·)]
dx′j
〈x′j〉

,

where by 〈x′j〉 we denote the product
∏N
i=1,i6=j xi. We recall

that the ϕ−variation of a function g : [a, b]→ R is defined as

V ϕ[a,b][g] := sup
D

n∑
i=1

ϕ(|g(si)− g(si−1)|),

where D = {s0 = a, s1, . . . , sn = b} is a partition of [a, b]
([26], [25]), and g is said to be of bounded ϕ−variation (g ∈
BV ϕ([a, b])) if V ϕ[a,b][λg] < +∞, for some λ > 0.

Let now Φϕ(f, I) be the Euclidean norm of the vector
(Φϕ1 (f, I), . . . ,ΦϕN (f, I)), namely

Φϕ(f, I) :=

{
N∑
k=1

[Φϕk (f, I)]2
} 1

2

.

We set Φϕ(f, I) = +∞ if Φϕk (f, I) = +∞ for some k =
1, . . . , N .

We define the multidimensional ϕ−variation of f on an
interval I ⊂ RN+ as

V ϕ[f, I] := sup
m∑
i=1

Φϕ(f, Ji),

where the supremum is taken over all the finite families of
N−dimensional intervals {J1, . . . , Jm} which form partitions
of I .

The ϕ−variation of f over the whole space RN+ is defined
as

V ϕ[f ] := sup
I⊂RN+

V ϕ[f, I],

where the supremum is taken over all the intervals I ⊂ RN+ .
By BV ϕ(RN+ ) we denote the space of functions of bounded
ϕ−variation over RN+ , i.e.,

BV ϕ(RN+ ) = {f ∈ L1
µ(RN+ ) : ∃λ > 0 s.t. V ϕ[λf ] < +∞}.
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We will say that a function f : RN+ → R is locally
ϕ−absolutely continuous (f ∈ ACϕloc(RN+ )) if f is (uniformly)
ϕ−absolutely continuous in the Tonelli sense: this means that

for every I =
N∏
i=1

[ai, bi] ⊂ RN+ and for every j = 1, 2, . . . , N ,

the j−th sections of f , f(x′j , ·) : [aj , bj ]→ R, are (uniformly)
ϕ−absolutely continuous for almost every x′j ∈ [a′j , b

′
j ], i.e.,

for every ε > 0 there exists δ > 0 for which
n∑
i=1

ϕ(λ|f(x′j , β
i)− f(x′j , α

i)|) < ε,

for a.e. x′j ∈ [a′j , b
′
j ] and for all finite collections of non-

overlapping intervals [αi, βi] ⊂ [aj , bj ], i = 1, . . . , n, such

that
n∑
i=1

ϕ(βi − αi) < δ.

By ACϕ(RN+ ) we will denote the subspace of BV ϕ(RN+ ) of
the ϕ−absolutely continuous functions, namely all the func-
tions of bounded ϕ−variation which are locally ϕ−absolutely
continuous.

III. RESULTS ABOUT THE MULTIDIMENSIONAL
ϕ−VARIATION

Our multidimensional ϕ−variation satisfies similar proper-
ties to the Musielak-Orlicz ϕ−variation and to the Jordan
variation. In particular we prove that BV ϕ(RN+ ) is a vector
space, namely, αf1 + βf2 ∈ BV ϕ(RN+ ) whenever f1, f2 ∈
BV ϕ(RN+ ), α, β ∈ R. Indeed this is a consequence of the
following property ([8])

V ϕ[λ(f1 + f2)] ≤ 1
2

(
V ϕ[2λf1] + V ϕ[2λf2]

)
, λ > 0,

and of the trivial consideration that V ϕ[λf ] ≤ V ϕ[µf ], if
0 < λ ≤ µ.

Another classical property of variation which is preserved
by our definition is the lower semicontinuity with respect to
pointwise convergence. Indeed, in this paper we prove that, if
(fk)k∈N is pointwise convergent to f , then

V ϕ[f ] ≤ lim inf
k→+∞

V ϕ[fk].

Finally it is also possible to prove results about additivity
on intervals which are quite similar to the classical ones.
Nevertheless we recall that a crucial difference with the Jordan
variation is that, in the frame of ϕ−variation, even in the one-
dimensional case, we don’t have at our disposal an integral
representation of ϕ−variation for absolutely continuous func-
tions.

IV. MELLIN OPERATORS AND CONVERGENCE RESULTS

We will study the following family of Mellin-type integral
operators of the form

(Twf)(s) =
∫

RN+
Kw(t)f(st)

dt

〈t〉
, w > 0, s ∈ RN+ , (I)

for f ∈ BV ϕ(RN+ ), where {Kw}w>0 is a family of bounded
approximate identities, i.e.,

Kw.1) Kw : RN+ → R is a measurable essen-
tially bounded function such that Kw ∈ L1

µ(RN+ ),
‖Kw‖L1

µ
≤ A for an absolute constant A > 0 and∫

RN+
Kw(t)〈t〉−1dt = 1, for every w > 0,

Kw.2) for every fixed 0 < δ < 1,∫
|1−t|>δ |Kw(t)|〈t〉−1dt→ 0, as w → +∞.

We point out that, since Kw is essentially bounded, if f ∈
BV ϕ(RN+ ), (Twf)(s) is well-defined for every s ∈ RN+ and
w > 0.

We first obtain two estimates for our integral operators (I).
The first one proves that {Tw}w>0 map BV ϕ(RN+ ) into itself.

Proposition 1: Let f ∈ BV ϕ(RN+ ) and let {Kw}w>0 be
such that Kw.1) holds. Then there exists λ > 0 such that

V ϕ[λ(Twf)] ≤ V ϕ[ζf ], (3)

where ζ > 0 is the constant for which V ϕ[ζf ] < +∞.
Therefore, Tw : BV ϕ(RN+ )→ BV ϕ(RN+ ).

The second estimate will be the main tool in or-
der to prove the convergence result. By ωϕ(λf, δ) :=
sup|1−t|≤δ V ϕ[λ(τtf − f)], where τtf(s) := f(st), s, t ∈
RN+ is the dilation operator, we denote the ϕ−modulus of
smoothness of f .

Proposition 2: Let f ∈ BV ϕ(RN+ ) and let {Kw}w>0 be
such that Kw.1) is satisfied. Then for every λ > 0, δ ∈]0, 1[
and w > 0,

V ϕ[λ(Twf − f)] ≤ ωϕ(λAf, δ)

+A−1V ϕ[2λAf ]
∫
|1−t|>δ

|Kw(t)|〈t〉−1 dt.

This estimate links the ϕ−variation of the error of ap-
proximation (Twf − f) to the ϕ−modulus of smoothness,
hence the convergence result will follow by the assumptions
on kernel functions and by the following result of convergence
for ωϕ(f, δ) ([8]):

Theorem 1: Let f ∈ ACϕ(RN+ ). Then there exists λ > 0
such that limδ→0+ ωϕ(λf, δ) = 0.

By means of Propositions 1 and 2, and using Theorem 1,
we can therefore prove the main convergence result:

Theorem 2: Let f ∈ ACϕ(RN+ ) and let {Kw}w>0 be
such that Kw.1) and Kw.2) are satisfied. Then there exists
a constant µ > 0 such that

lim
w→+∞

V ϕ[µ(Twf − f)] = 0.

We also obtain results about the order of approximation,
with suitable singularity assumptions on kernels, for functions
which belong to the Lipschitz class V ϕLipN (α), α > 0,
defined as
V ϕLipN (α) := {f ∈ BV ϕ(RN+ ) : ∃µ > 0 s.t.

V ϕ [µ∆tf ] = O(| log t|α), as |1− t| → 0},

where ∆tf(x) := (τtf−f)(x) = f(xt)−f(x), for x, t ∈ RN+ ,
and log t := (log t1, . . . , log tN ).

We point out that, in the particular case of Fejér-type
kernels, namely kernels of the form

Kw(t) = wNK(tw), t ∈ RN+ , w > 0,
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where K ∈ L1
µ(RN+ ) is essentially bounded and such that∫

RN+
K(t)〈t〉−1 dt = 1, it is possible to prove that all the

assumptions of the results about the rate of approximation are
implied by the classical condition that the absolute moments
of order α of K are finite.

V. THE PARTICULAR CASE OF BV (RN+ )

It is immediate to see that assumption 2) on the ϕ−functions
implies that the identity function does not belong to the class
Φ. Nevertheless all the theory can be developed also for the
space BV (RN+ ), i.e., taking ϕ(u) = u, u ∈ R+

0 , in the
definition of the variation, and hence replacing everywhere
the Musielak-Orlicz ϕ−variation with the Jordan variation.
In this setting we obtain a new multidimensional concept of
variation in the sense of Tonelli in the frame of Mellin theory
and approximation results for Mellin-type integral operators
in BV (RN+ ). Indeed assumption 2) on the ϕ−function, that
now fails, is just used to prove the convergence result for
the ϕ−modulus of smoothness (Theorem 1) and it replaces
the lack of the integral representation of ϕ−variation. On the
contrary, working with the classical variation, we have at our
disposal the integral representation for absolutely continuous
functions, and the convergence of the modulus of smoothness
can be derived from it: hence, by means of different tech-
niques, we prove the following

Theorem 3: If f ∈ AC(RN+ ), then limδ→0+ ω(f, δ) = 0.
Here AC(RN+ ) and ω(f, δ) denote the space of the absolutely
continuous functions and the modulus of smoothness, respec-
tively, in the case ϕ(u) = u, u ∈ R+

0 .
The other results (estimates, convergence and rate of ap-

proximation) can be proved in a similar fashion, and therefore
we obtain new results also in the case of the classical multi-
dimensional variation in the present setting.
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