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Abstract—Three classes of special frames are presented: special
Fourier-type frames, special Gabor frames and special wavelet
frames. Known information about density of Fourier-Bessel
frames, Gabor (super)frames with Hermite functions and wavelet
(super)frames with Laguerre functions will be outlined.

I. INTRODUCTION

Given a Hilbert space H, a vector g ∈ H and a family of
operators {πλg}λ∈Λ, the special frame problem consists of the
following question:
• What conditions one should impose on a discrete set Λ,

such that {πλg}λ∈Λ is a frame for H?
More precisely, we want to find constants A,B > 0 such

that, for every f ∈ H,

A ‖f‖2 ≤
∑
λ∈Λ

|〈f, πλg〉H|
2 ≤ B ‖f‖2 . (1)

The term special refers to a viewpoint: rather than looking
at general properties of frames, we want to know detailed
information about a specific example of a frame with particular
interesting structure. We will consider three classes of frames.

1) Fourier Frames: H = L2(−π, π), g(x) = eix and
πλg(x) = g(λx). For g other that eix we will talk about
Fourier-type frames.

2) Gabor frames: H = L2(R) and πλ=(λ1,λ2)g(x) =
e2πiλ2tg(t− λ1). Several choices of g are possible.

3) Wavelet frames (positive frequencies): H = H2(C+)

and πλg(t) = λ
− 1

2
1 g(λ−1

1 (t − λ2)), t ∈ R. Several
choices of g are possible.

II. SPECIAL FOURIER-TYPE FRAMES

While the Fourier orthogonal basis is of the form
{eikx}k∈Z , Fourier frames are of the form {eiλx}λ∈Λ, allow-
ing the set Λ to be nonuniform and redundant. The orthogonal
basis case Λ = Z works as a threshold for Fourier frames:
we know that frames requires Λ to be “denser than Z” [16].
We can think of Fourier frames as being made out of the
special function f(x) = ex. Frames of the form {f(λx)}λ∈Λ

will be called Fourier-type frames. To keep intact the rich set
up of the Fourier frames we want to be able to transfer our
Fourier-type frames to a Paley–Wiener-type space using some
Fourier-type transform. Moreover, we are interested in cases
displaying a second order differential operator commuting with
the respective concentration operators. In the case of Fourier
frames, the existence of such an operator is regarded as a
“fortunate accident”, according to Daubechies exposition in

[9, page 22]. In the work of Tracy and Widom about the local
statistics of the asymptotics of certain random matrices [19],
[18], one can find two more instances where this “fortunate
accident” occurs. This motivated our investigation of Fourier-
Bessel frames [5] and Airy frames [6]. Let us say a bit more
about the results in [5].

Let Jα(x) be the Bessel function of order α > −1/2 and
jn,α its nth zero. While the Fourier-Bessel orthogonal basis is
of the form {x 1

2 Jα(jn,αx)}∞n=0, Fourier-Bessel frames are of
the form {(λx)

1
2 Jα(λx)}λ∈Λ, allowing the set Λ to be nonuni-

form and redundant. To obtain the definition of a Fourier-
Bessel frame, choose in (1) H = L2[0, 1], g(x) = (x)

1
2 Jα(x)

and (πλg)(x) = g(λx). In [5], we have considered a more
general situation than frames and obtained analogues of the
Landau conditions [16] for interpolation and sampling. As a
particular case we obtain precise necessary density conditions
for Fourier Bessel frames. Let na(r) denote the number of
points of Λ ⊂ (0,∞) to be found in [a, a+ r]. Then the lower
density of Λ is given by D−(Λ) = limr→∞ inf infa≥0

na(r)
r .

The main result in [5] is the following Landau-type necessary
condition for sampling in spaces of functions Bα(S) whose
Hankel transform (the analogue of the Fourier transform in
this context) is supported on a set S of bounded measure:

Theorem [5]: Let S be a measurable subset of (0,∞) and
α > −1/2. If a separated set Λ is of sampling for Bα(S),
then

D−(Λ) ≥ 1

π
m(S). (2)

III. SPECIAL GABOR (SUPER)FRAMES

The investigation of special Gabor frames has been a
topic of high interest in the last twenty years. See the
recent paper [13] and the outline in the Introduction. We
can construct Gabor superframes with Hermite functions,
which are useful in the multiplexing of non-stationary sig-
nals. Consider the Hilbert space L2(R,Cn) of vector-valued
functions −→f = (f0, ..., fn−1) together with the inner product〈−→
f ,−→g

〉
H

=
∑

0≤k≤n−1 〈fk, gk〉L2(R). To obtain the defi-
nition of a Gabor superframe for the vector valued system
G(−→g ,Λ) = {πλ−→g }λ∈Λ, choose in (1) H = L2(R,Cn),
g = −→g and, given a point λ = (λ1, λ2) in R2, define πλ
as the time-frequency shift πλg(t) = e2πiλ2tg(t− λ1), t ∈ R.

There is a characterization of all lattices generating Gabor
superframes with Hermite functions hn [12], which is equiv-
alent to a sampling problem in a Fock space of polyanalytic
functions [1].
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Theorem [12] Let −→hn = (h0, ..., hn−1) be the vector of the
first n Hermite functions. Then G(

−→
hn, αZ + iβZ) is a frame

for L2(R,Cn), if and only if αβ < 1
n+1 .

For a special frame generated by a single Hermite function,
the characterization is still an open problem. Nevertheless,
some interesting results are known. If αβ < 1

n+1 then
G (hn, αZ + iβZ) is a frame [11] but if αβ = 1 − 1

j then
G (h1, αZ + iβZ) is not [14]. Supported by their results and
by some numerical evidence, the authors of [14] conjectured
that if αβ < 1 and αβ 6= 1 − 1

j , then G (h1, αZ + iβZ) is a
frame.

IV. SPECIAL WAVELET (SUPER)FRAMES

We can also construct wavelet superframes which are useful
in the multiplexing of non-stationary signals of positive fre-
quencies, leading to a sampling problem in certain (Bergman)
spaces of polyanalytic functions. We should emphasize again
that our viewpoint of wavelet frames is different of those ones
documented in [9] and in the more recent monograph [15].
For a vector g = (g1, ..., gn) such that the Fourier transforms
of any two functions gi and gj are orthogonal in L2(R+, t−1),
define πz pointwise as πzg = (πzg1, ..., πzgn). To obtain the
definition of a wavelet superframe for the vector valued system
W(−→g ,Λ) = {πλ−→g }λ∈Λ, let in (1) H = H2(C+, Cn) be
the inner product space whose vector components belong to
H2(C+), the standard Hardy space of the upper half-plane,
g = −→g and, given a point λ = (λ1, λ2) in R2, define πλ as
the time-scale shift πλg(t) = λ

− 1
2

1 g(λ−1
1 (t− λ2)), t ∈ R.

We consider wavelet superframes with analyzing wavelets−→
Φαn = (

Φα0
cΦα

0

, ...,
Φαn
cΦαn

), where c2Φαn = Γ(n+α+1)
n! is the admis-

sibility constant of the vector component Φαn defined via its
Fourier transform as

FΦαn(t) = t
1
2 lαn(2t), with lαn(t) = t

α
2 e−

t
2Lαn(t), (3)

where Lαn(t) is the standard notation for the Laguerre polyno-
mial.

The problem of, given a wavelet g, to characterize the sets
of points Λ such that W(g,Λ) is a wavelet frame (and the
corresponding problem for the superframes defined above), is
more difficult than the corresponding one for Gabor frames.
The only characterization known so far concerns the case
n = 0 in (3). In this case, the problem can be reduced to the
density of sampling in the Bergman spaces, which has been
completely understood in [17]. An important research problem
is to understand how Seip’s results extend to the whole family
{Φαn}. The only thing known to the present date is a necessary
condition obtained in [2] in terms of a set of points known
as the “hyperbolic lattice” Γ(a, b) = {ambk, am}k,m∈Z . The
quantity b log a replaces the time-frequency αβ for purposes
of measuring frame density.

Theorem [2]: If W(Φ2α−1
n ,Γ(a, b)) is a wavelet frame for

H2(C+), then b log a < 2π n+1
α .

Using the polyanalytic structure of the underlying Bergman
spaces [3] one can also prove a result which shows that it is
necessary to oversample by a rate of n to obtain superframes.
This matches what one would expect from [10].

Theorem [4]: IfW(
−−−−→
Φ2α−1
n ,Γ(a, b)) is a wavelet superframe

for H2(C+, Cn), then b log a < 2π
n+α .

Actually in [4] we obtain a much stronger result using Seip´s
density [17], as part of our sampling results in polyanalytic
Bergman spaces.
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