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Abstract—We introduce g-ary compressive
sensing, an extension of 1-bit compressive sensing.
We propose a novel sensing mechanism and a
corresponding recovery procedure. The recovery
properties of the proposed approach are analyzed
both theoretically and empirically. Results in 1-
bit compressive sensing are recovered as a special
case. Our theoretical results suggest a tradeoff
between the quantization parameter ¢ and the
number of measurements m, in controlling the
error and robustness to noise of the resulting
recovery algorithm.

1. INTRODUCTION

Reconstructing signals from discrete mea-
surements is a classic problem in signal pro-
cessing. Properties of the signal allow the recon-
struction from a minimal set of measurements.
The classical Shannon sampling result ensures
that band limited signals can be reconstructed
by a linear procedure, as long as a number of
linear measurements, at least twice the maxi-
mum frequency, is available. Modern data anal-
ysis typically requires recovering high dimen-
sional signals from few inaccurate measure-
ments. Indeed, the development of Compressed
Sensing (CS) and Sparse Approximation [1]
shows that this is possible for signals with
further structure. For example, d-dimensional,
s-sparse signal can be reconstructed with high
probability through convex programming, given
m ~ slog(d/s) random linear measurements.

Non-linear measurements have been re-
cently considered in the context of 1-bit
compressive sensing [2], [3, [4], [51, [6]
(http://dsp.rice.edu/1bitCs/). Here, bi-
nary (one-bit) measurements are obtained by
applying, for example, the “sign” functiorﬂ
to linear measurements. More precisely, given
r € R?, a measurement vector is given by
y = (y1,--.,Ym), where y; = sign((w;,z))
with w; ~ N(0, I4) independent Gaussian ran-
dom vectors, for ¢ = 1,...,m. It is possible to
prove [4] that, for a signal z € K N B¢ (B?

'A d-dimensional signal, that is a vector in R, is s-
sparse if only s of its components are different from zero.

*More generally, any function § : R — [—1,1], such
that E(gf(g) > 0) can be used.
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is the unit ball in R?), the solution Z,, to the

problem
m
ggzgy (w;,z),
1=

ey

)

5 0

satisfies ||, — z|° < with probability

1 — 8exp(—cd?m), § > 0, as long as m >
C62w(K)? [4). Here, C' denotes a univer-
sal constant and w(K) = Esup,cx_x (w, )
the Gaussian mean width of K, which can
be interpreted as a complexity measure. If K
is a convex set, problem can be solved
efficiently.

In this paper, borrowing ideas from signal
classification and machine learning, we discuss
a novel sensing strategy, based on g-ary non-
linear measurements, and a corresponding re-
covery procedure.

II. Q-ARY COMPRESSIVE SENSING
A. Sensing and Recovery

The sensing procedure we consider is given
by a map C from K NB% to F = {0,...,q —
1}™, where K C R?. To define C' we need the
following definitions.

Definition 1 (Simplex Coding [7]). The simplex
coding map is S : {0,...,q — 1} — RI7L,
S(j) = s;, where

D si|* =1,

2)(sj,8:) = —ﬁ,for i,

3) Y9y s =0

Definition 2 (g-ary Quantized Measurements).
Let W € R?14 pe q Gaussian random matrix,
ie. Wi; ~ N(0,1) for all i,j. Then, Q : K N
B? - {0,...,q—1},
Q(z) = Qw(x) = argmax (s;, Wzx),
§=0...q—1
is called a q-ary quantized measurement.

Then, we can define the g-ary sensing strategy
induced by non-linear quantized measurements.

Definition 3 (g-ary Sensing). Let W1, ..., W,
be independent Gaussian random matrices in



RI~14 and Qw, (x),i = 1,...,m as in Def. E]
The q-ary sensing is C : KNBY — {0,...,q—
1},

C(x) =
Vo € K NBL

(Qw, (), ... Qw,, (),

Before describing the recovery strategy we con-
sider, we discuss the connection to 1-bit CS and
binary embeddings [8] [6] .

Remark 1 (Connection to 1-bit CS). If ¢ = 2,
W reduces to a Gaussian random vector, and
2Q(z) — sign(Wx), so that the g-ary
quantized measurements become equivalent to
those considered in 1-bit CS.

Remark 2 (Sensing and Embeddings). It can be
shown that C' defines an e-isometric embedding
of (K,|||l) into (F,dg) — up-to a bias term.
Here dy is the (normalized) Hamming distance,
da(u,v) = =37 Ly,zo,u,v € F. This
analysis is deferred to the long version of this

paper.

In this paper, we are interested in provably
(and efficiently) recovering a signal = from its
g-ary measurements y = (Y1, ..., Ym) = C(x).
Following [4], we consider the recovery strategy
D:{0,...,q—1}™ — K N B9 defined by,

m

1
D(y) = argmax — Z (8y,, Wiu) .

m
ue KNB4 i—1

2

The above problem is convex if K is convex
and can be solved efficiently, see Section
In the next section, we prove that the solution to
Problem has good recovery guarantees both
in noiseless and noisy settings.

Remark 3 (Connection to Classification). The
inspiration for considering q-ary CS stems from
an analogy between 1-bit compressed sensing
and binary classification in machine learning.
In this view, Definition (E]) is related to the
approach proposed for multi category classi-
fication in [7|]. Following these ideas, we can
extend the recovery strategy (2) by considering

Dy (y) = arg min — Z V(-

ueKNBd M SwaZU>)’

3)
where V' is a convex, Lipschitz, non-decreasing
loss function V. : R — RT. Problem (@)
corresponds to the choice V(x) = x. Other
possible choices include V (x) = max(1+x,0),
V(z) = log(1 + €®), and V(x) = e®. Each
of these loss functions can be seen as convex
relaxations of the 0-1 loss function, defined as
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V() = 0if « < 0, and 1 otherwise. The
0 — 1 loss defines the misclassification risk,
which corresponds to Hamming distance in CS,
and is a natural measure of performance while
learning classification rules.

Remark 4 (Recovery of Distorted Signals). We
note that the q-ary approach could be of par-
ticular interest in situations where the signals
can undergo unknown non-linear distortions,
because of the robustness of the maximum in
the definition of the g-ary measurements.

B. Recovery guarantees: Noiseless Case

The following theorem describes the recovery
guarantees for the proposed procedure for sig-
nals in a set K of Gaussian mean width w(K).
We first consider a noiseless scenario.

Theorem 1. Let § > 0, m > C62w(K)2
Then with probability at least
1 — 8exp(—cd?m), the solution &, = D(y) of
problem @) satisfies,

o

1

— @)
og(q)

|&m —2]” <

A proof sketch of the above result is given
in Section while the complete proof is
deferred to the long version of the paper. Here,
we add four comments. First, it can be shown
the the above result bound is derived from an
error bound,

w(K)
log(q)m

with probability at least, 1 —4 exp(—2t2),t > 0.
Second, Inequalities (@), () can be compared
to results in 1-bit CS. For the same number
of measurements, m > C6 2w(K)?, the error
for g-ary CS is 3 , in contrast with
g-ary ) \ﬁ

in the 1-bit CS [4], at the expense of a more
demanding sensing procedure. Also note that,
for ¢ = 2, we recover the result in 1-bit CS
as a special case. Third, we see that for a
given accuracy our results highlight a trade-off
between the number of g-ary measurements m
and the quantization parameter q. To achieve an
error € with a memory budget of ¢ bits, one can
choose m and ¢ so that e = O(———), and

mlOg(Q)
mlogy(q) = £ (see also section [[II-B). Finally,

in the following we will be mterested in K be-
ing the set of s-sparse signals. Following again
[4], it is interesting to consider in Problem
the relaxation

Ky ={u€R?: [lull; < Vs, [lull, <1}

||£m_x||2 C( +t ’ (5)




With this choice, it it possible to prove that
w(Ky) < Cy/slog(%?), and that for m >
C6~2slog(24), the solution of the convex
program (@) on K satisfies, ||&, —z|° <

1‘5( - We end noting that other choices of
ié og(q

are possible, for example in [9] the set of
group sparse signals (and its Gaussian width) is
studied.

C. Recovery Guarantees: Noisy Case

Next we discuss the g-ary approach in two
noisy settings, related to those considered in [4].
Noise before quantization. For i = 1,... m,
let

y; = arg max {(s;, Wiz) +g;}, (6)
7j=0...q—1

with g; independent Gaussian random variables
of variance o2. In this case, it is possible to
prove that, for m > C62w(K)?,

2 < 6\/1+02
= Viog(g)

with probability at least 1—8 exp (—cd?m). The
quantization level ¢ can be chosen to adjust to
the noise level o for a more robust recovery
of x. This result can be viewed in the perspec-
tive of the bit-depth versus measurement-rates
perspective studied in [10], where it is shown
that 1-bit CS outperforms conventional scalar
quantization. In this view, g—ary CS provides
a new way to adjust the quantization parameter
to the noise level.

Inexact maximum. For ¢ = 1,...,m, let
y; = Qw,(x), with probability p, and y; = r
with probability 1 — p, with » drawn uniformly
at random from {0,...,q — 1}. In this case, it
is possible to prove that, for m > C6~2w(K)?,

2 )
"< ————-
V1og(q)(2p — 1)
with probability at least 1—8 exp (—cd?m). The

signal = can be recovered even if nearly half of
the g-ary bits are flipped.

1Zm — ||

[&m —

D. Elements of the proofs

We sketch the main steps in proving our
results. The proof of Theorem |lf is based on:
1) deriving a bound in expectation, and 2)
deriving a concentration result. The proof of the
last step uses Gaussian concentration inequality
extending the proof strategy in [4]]. Step 1) gives
the bound

E (||Zm — z||?) < ——=£t—
m =10 < & Togtam

?
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the proof of which is based on the following
proposition.

Proposition 1. Ler £,(u) = Ew((sy, Wu)),
where v = Qw (). Then, Yu € B, we have,

Sl =l < o (Eal) — Exw)

1
Aq)
where A(q) = Ey4((s5,9)), and g ~
N(0,1;-1), and 5 = argmax;_o_, 1 (55, 9)-

Using results in empirical process theory it
possible to show that
K
|@@—&@Mgcﬁ%.
The bound on the expected recovery follows
combining the above inequality and Proposi-
tion [I] with the inequality,

Aq) = Cv/log(q),

which is proved using Slepian’s inequality and
Sudakov minoration.

Results in the noisy settings follow from
suitable estimates of A(q). Indeed, for the noise
before quantization case it can be proved that

Ag) > Cy/® fgfz). For the inexact maximum
case one has
) =Ey4((sy,9)) =

PE( max (s;,9)) + (1 = p)E((sr, 9)) =
CpV/log(q) + (1 —p)E( min (s;.9)) >

(2p — 1)C/log(q)-
III. EXPERIMENTAL VALIDATION

A. An Algorithm for Sparse recovery

In our experiments, we considered the follow-
ing variation of problem (2), Let & = s, W; €
R%i=1...m.

1 m
max — & ou)y—nllull;, @
S T 2 () — el
where 7 > 0. The above problem can be
solved efficiently using Proximal Methods [[11]].
Indeed, a solution can be computed via the
iteration,

v m
Uty = Ut‘*‘lZfi,
m
=1
Up1 = Prox,(ug),
Upyp = ut+1min(”m+1”, .
2

Where v, is the gradient step size, and Prox,,
acts component-wise as max(1— ﬁ, 0)u;. The
iteration is initialized randomly to a unit vector.



Remark 5. The computational complexity of
the sensing process depends on both m and q,
while, once computed &;, that of the recovery
algorithm depends only on m, and is the same
as in 1-bit CS. In this sense, given a bit rate, the
same precision can achieved by 1-bit CS and g-
ary CS, with a better computational complexity
for the decoding in the g-ary case.

B. Sparse Recovery

We tested our approach for recovering a sig-
nal from from its g-ary measurements. We con-
sidered sparse signals of dimension d generated
via a Gauss-Bernoulli model. In Figure 1.(a), we
see that the reconstruction error Z,, (in blue),
for varying m and q fixed, follows the theoreti-
cal bound — (1n red). In Figure 1.(b), we see
that the reconstructlon error of Z,, (in blue), for
varying ¢ and m fixed, follows the theoretical
bound —=—= (in red). Figures 1.(c), and 1.(d)

highlight the tradeoff between the number of
measurements and the quantization parameter.
For a precision €, and a memory budget 27, one
can choose an operating point (m, ¢), according

to the theoretical bound \/ﬁ.

|

| . f}\g‘.
il M&" ) f ‘“‘\’”\W‘ ,’\‘[1 il i ‘u;_

*
(a) Error ||z — |2 versus m,

q
(b) Error ||z — &||? versus g,
or g = 3,d = 100. 100.

form =70,d=

(Xl

4

() Theoretical bound for ||z — &[>
versus m and g.

(d) Empirical Error ||z — |2
versus m and g.

Fig. 1. g-ary Compressive Sensing: Quantization/Number
of measurements tradeoff.

C. Image Reconstruction

We considered the problem of recovering
an image from g¢-ary measurements. We used
the 8—bit grayscale boat image of size 64 x
64 pixels shown in Figure 2fa). We extracted
and thresholded the wavelet coefficients to get
a sparse signal. We normalized the resulting
vector of wavelets coefficients of dimension
d = 3840 to obtain a unit vector. Then, we
performed sensing and recovery with ¢ = 2° (5-
bit compressive sensing ) and ¢ = 2 (1-bit com-
pressive sensing) for the same m = 2048 < d.
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We compared the SNR of the corresponding
reconstructed images in noiseless (Figures [2[b)-
(c)), and noisy settings (noise before quantiza-
tion model (6), with o = 0.8), Figures[2(d)-(e).
Note that in this setting we are comparing 1-bit
CS and g-ary CS, for the same decoding time
(same m). The results confirm our theoretical
findings: higher quantization improves the SNR,
as well as robustness to noise of g-ary CS.

Fig. 2. Image recovery with g-ary CS. (a) Original image.
(b) Reconstruction with no-noise: ¢ = 2%, SNR = 20.2
dB. (c) Reconstruction with no-noise: ¢ = 2, SNR = 16.2
dB. (d) Reconstruction with noise: ¢ = 2°, SNR = 18.3
dB. (e) Reconstruction with noise: ¢ = 2, SNR = 15 dB.
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