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Abstract—In this short paper we survey recent results char-
acterizing the fundamental draws and limitations of adaptive
sensing for sparse signal inference. We consider two different
adaptive sensing paradigms, based either on single-entry or
linear measurements. Signal magnitude requirements for reliable
inference are shown for two different inference goals, namely
signal detection and signal support estimation.

I. INTRODUCTION

In this short paper we survey recent results characterizing
the fundamental draws and limitations of adaptive sensing.
One of the key aspects of adaptive sensing is that the data
collection process is sequential and adaptive. In different
fields these sensing/experimenting paradigms are known by
different names, such as sequential experimental design in
statistics and economics (see [1], [2], [3], [4], [5]), active
learning or adaptive sensing/sampling in computer science,
engineering and machine learning (see [6], [7], [8], [9], [10],
[11], [12], [13], [14]). An essential aspect of adaptive sensing
is the intricate coupling between data analysis and acquisition,
which creates a powerful feedback structure. This is a double-
edged sword: it is key to harness the power of sequential
experimental design but also raises challenges in the analysis
of such methodologies — indeed it creates complicated and
strong dependencies in the data sequence.

We consider a model where the signal of interest is rep-
resented by a sparse vector £ € R”, meaning that most
entries of x are zero and only few of the entries are non-
zero. Specifically let S be a subset of {1,...,n} of non-
zero entries of x, and assume that for all ¢ € {1,...,n}
such that i ¢ S we have x; = 0. We refer to S as the
signal support set and this is our main object of interest. We
consider two distinct classes of problems: (i) signal detection,
where we want to test if S belongs to a particular class
of subsets of {1,...,n}, and (ii) support estimation, where
we desire to actually estimate S. The signal  in naturally
assumed to be unknown, but we can collect partial informa-
tion about it through noisy measurements. In particular we
consider generalizations of the normal means model allowing
for multiple and sequential measurements, therefore enabling
adaptive sensing strategies. Our focus is primarily on single-
entry observations, but in Section III we discuss also a different
(and statistically more powerful) sensing model which allows
for linear measurements of the signal - in what is often referred
to as Compressive Sensing (CS).

II. SINGLE-ENTRY MEASUREMENTS

This sensing model was first proposed in [15]. Measure-
ments are of the form

1/2

Yi=x4, +1, "Wy, k=1,2,...,

where Ay, Ty are taken to be functions of {Y;, A;,T'; f:_ll,

and W}, are standard normal random variables, independent of
{Y;}*=! and also independent of {A;,T;}%_,. In words, each
measurement corresponds to a single signal entry corrupted
with additive Gaussian noise, and the choice of entry and
noise level can be controlled. However, there is a total sensing
budget constraint that must be satisfied, namely

Y Tu<m, @)
k=1

where m > 0. In the above model Ay should be viewed as
the sensing action taken at time k, and T'j is the precision
of the corresponding measurement. We have control over
both quantities. Informally stated, measurements are collected
sequentially, and for each measurement we can choose which
entry of x to observe, and what is the precision (i.e. accuracy)
of the measurement. We are allowed to collect as many
measurements as desired provided the cumulative precision
used satisfies the budget (1). Note that in this model we
are allowed to collect an infinite (but countable) number of
measurements, provided the precision 'y, converges to zero as
k grows. Although this might seem strange at first, it is not
entirely unreasonable in practice - in many sensing modalities
the precision is directly proportional to the amount of time
necessary to collect a measurement, and therefore (1) can
be viewed simply as a time constraint. This is the case in
various imaging modalities (e.g. in astronomy) where long
exposure times are used to reduce the noise level, which is
inversely proportional to the exposure time. It is important
to note that there are also settings where the actual number
of measurements is limited, and there is little control on the
precision level. In that case (1) might represent a constrain
on the total number of measurements, provided I'y is not a
function of k. The results in the latter setting are similar to the
ones presented in the current paper, especially when studying
asymptotics (when both n and m grow).

It is important to note that we can consider both deter-
ministic sequential designs or random sequential designs. In
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the latter we allow the choices A and I'y to incorporate
extraneous randomness, which is not explicitly described in the
model. The collection of conditional distributions of Ay, Ty
given {Yi,Ai,Fi}f:_f for all k is referred to as the sensing
strategy. Note that, within the sensing paradigm above we can
also consider non-adaptive sensing, meaning that the choice of
sensing actions and corresponding precision is made before
collecting any data. Formally this means that {Ay, Tt }ren
is statistically independent from {Y}}ren. Note that a non-
adaptive design can still be random.

The case m = n is of particular interest, allowing a
direct comparison between adaptive and non-adaptive sensing
methodologies. When m = n we allow on average one unit
of precision per each of the signal entries. So, if there is no
reason to give preference to any particular entry of x, the
natural optimal non-adaptive sensing strategy should simply
measure each entry of x exactly once, with precision one.
This corresponds to the well studied normal means model.

For simplicity of presentation we consider only signals of

the form
o { w ifiesS
! 0 ifi¢gs
where p > 0 is called the signal amplitude. This restriction
is also considered in [16], [17] in the non-adaptive sensing
context and does not substantially hinder the generality of the
results presented in this manuscript.

As stated before we consider two different inference prob-
lems: (i) signal detection and (ii) support estimation. For the
detection problem (i) the goal is to determine if a signal
is present or absent. We formulate the problem as a binary
hypothesis testing, and test a simple null hypothesis against a
composite alternative. In particular the null hypothesis Hy is
simply S = (), and the alternative hypothesis H; is S € C,
where C is some class of non-empty subsets of {1,...,n}.
For simplicity of presentation we assume that all the sets in
C have the same cardinality s. A test procedure based on the
(adaptive) measurements is described by a binary test function
¢ ({A;,T;,Y;}22,) € {0,1}, and a natural way to measure the
performance of such a test function is the worst case risk

R(¢) =Py(6 # 0) + maxPs(¢ #1) ,

where Pg denotes the joint probability distribution of
{4;,T;,Y;}52, for a given support set S. Characterizing the
relation between R((ﬁ), n, m, p, and C is our main objective.
The goal of the estimation problem (ii) is (statistically) more
ambitious, as we seek to actually identify the support set S. An
estimation procedure is a function S mapping {A;, T';, Y;}22,
to a subset of {1,...,n}. There are several sensible ways to
measure “closeness” between S and the true support set S,
for instance the worst case probability of making any errors

max Pg[S # 5] .
Sec S[ 7& ]
A somewhat more stringent metric is the worst case expected

number of errors maxgec Es[|SAS|], and clearly Ps[S #
S] < Eg[|SAS]]. We will focus mainly on the first metric in

this manuscript, but remark that the two metrics are essentially
equivalent in several cases.

A. Single-entry Measurements: Results

In this section we present the fundamental tradeoffs for the
inference problems presented above. Clearly these results bear
some dependency on the class of sets C:

Definition IL.1 (symmetric class). Let S be a random set,
drawn uniformly at random from C. If for all i € {1,...,n}
we have P(i € S) = s/n the class C is said to be symmetric.

In words, in a symmetric class of sets there is no reason to
give a priori preference to any individual entry. Many classes
C of interest satisfy this mild symmetry, for instance all the
classes in [16]. Of particular interest is the maximal class of all
the subsets of {1, ..., n} with cardinality s, which corresponds
to lack of structure in the sparsity pattern S. If the class C is
smaller then we say the sparsity patterns .S have structure. An
example of a structured class is presented later.

Theorem IL.1 ([18]). Let C be a symmetric class, and let )
be an arbitrary qdaptive sensing testing procedure. For any
0 <e<1,if R(®) < € then necessarily

1

2n1
— log — .
sm gQE

=

As argued before, the case m = n is of particular interest,
as it allows for comparison between adaptive and non-adaptive
sensing performance: in that case the above bound is of
the order \/% It is remarkable that the extrinsic signal
dimension n plays no role in this bound, and only the intrinsic
signal dimension s is relevant. This is in stark contrast to what
is known for the same problem if one restricts to the classical
setting of non-adaptive sensing, as in [19], [20], [17]. For
instance, for the class of all subsets with cardinality s the
non-adaptive sensing lower bound is of the order 4/log(n/s?)
if s < o(y/n). Therefore signals need to be much stronger in
order to be reliably detected when using non-adaptive sensing.
The above adaptive sensing lower bound is valid for any
symmetric class, and in particular for the maximal class of all
subsets S with cardinality s. For this class there is a adaptive
sensing methodology able to nearly achieve the lower bound.

Proposition IL.1 ([18]). Let s,, > logloglogn and consider
the class C of all subsets with cardinality s,. Furthermore

32logloglogn i ; : :
let p > 5 . There is an adaptive sensing testing
strategy for which

R(fi>)—>07
as n — oQ.

The mentioned procedure is based on the idea of distilled
sensing [15], but it does require some simple modifications
to attain the desired bound (see [18]). Note that the order
of the bound matches the one of the lower bound up to a
factor logloglog n. It is conjectured that this is an artifact of
the specific procedure, however, there are currently no known
procedures able to tighten this gap. Perhaps more noteworthy
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is the fact that extra structure in the class C is not helpful in
the adaptive sensing detection scenario! This is quite different
than in the non-adaptive sensing case, where the structure of
the set C can play a very prominent role as well documented
in [16], [21], [22], for instance.

The estimation problem exhibit similar trends, but structure
of the set C can give important cues on the design of adaptive
sensing methodologies. We focus first on the unstructured
case where C is the class of all subsets of {1,...,n} with
cardinality s.

Theorem IL.2 ([18]). Let C be the class of all subsets with
cardinality s, and let S be an arbitrary adaptive sensing
support estimator. For any 0 < € < 1, if maxgec Pg[S # 8] <
maxgec Eg[|SAS|] < € then necessarily

u? > \/Zn <logs+logn_8 +log1> .
“\m n+1 2¢

Again, focusing on the case m = n and assuming also the
signal is sufficiently sparse (meaning s, = o(n)), we see that
p needs to be on the order of /27 log(s,) to ensure the
probability of making any errors goes to zero as n increases.
This result is again in stark contrast with what is possible with
non-adaptive sensing, where the signal magnitude p needs
to be on the order of y/2logn to ensure the probability of
error goes to zero. Furthermore the above lower bound is
tight, as there is a procedure that allows for exact support
recovery with probability approaching 1 provided the signal
amplitude is of the order 2+/log s,, + loglogn (see [23], [24]).
The loglogn term and the “wrong” constant in the bound
are artifacts of their method (which is parameter adaptive and
agnostic about s,), and can be avoided when considering a
different approach - running in parallel n entry-wise properly
calibrated sequential likelihood ratio tests, which require the
knowledge of the sparsity level s,,. Such a procedure achieves
precisely the lower bound in the theorem.

It is interesting to notice that, unlike for detection, structure
in the class C can be extremely helpful for estimation. This is
the case both for adaptive and non-adaptive sensing. Perhaps
the simplest type of structure to consider is when the set .S
is an “interval”, meaning all the entries of S are contiguous
(e.g. S = {i,i+ 1,9+ s, — 1} for some 7). Then adaptive
sensing can successfully recover the support with probability
approaching 1 provided the signal magnitude is of the order
v/2log(sn)/sn, and this is the optimal rate (unpublished
work). Adaptive sensing under other structural constrains (e.g.,
cliques in a complete graph, paths in a graph) have to the
best of our knowledge not been thoroughly studied yet, and
therefore remain an important direction for future work.

III. LINEAR MEASUREMENTS AND COMPRESSED SENSING

The sensing model described in the previous section can be
modified to allow for linear measurements, in lieu of single-
entry samples. Formally the sensing model becomes

Y=Ax+W ,

where Y € R! denotes the observations, A € R*™ js
the design/sensing matrix, £ € R™ is the unknown signal,
and W € R! is a normal multivariate vector with zero
mean an identity covariance matrix. The rows of A can be
designed sequentially, and the i*" row (denoted by A;.) can
depend explicitly on {Y7, Aj.};;ll. Note that WW; is a normal
random variable independent of {Y;, A;., W; ;;11 and also
independent of A,;.. This setting is particularly interesting
when we impose norm constrains on A, namely

E[|A[%] <m, )

where || - ||F is the Frobenius matrix norm. Like (1), this
sensing budget condition is very natural and the issue of noise
is otherwise irrelevant. The norm of each row of A plays here
the role of the precision parameters 'y in (1).

Inference based on linear measurements is at the heart of
compressed sensing. Most existing literature focused on the
non-adaptive sensing paradigm, and identified strategies to
recover signals from a small number of measurements, see for
instance [25], [26], [27]. In our setting this means [ is chosen
to be as small as possible, while making the restriction [ = m.
In the results described below we consider only the sensing
budget restriction (2) and assume the number of measurements
[ can be potentially infinite.

As linear measurements are more powerful/general than
entry-wise ones, we might expect some performance improve-
ment in both the detection and estimation inference tasks. The
detection problem was been carefully studied in [28] and the
author has shown that for reliable detection it is necessary
and sufficient for the signal magnitude to be of the order
i«/n/m. Although this result is somewhat similar to the
one in Theorem II.1 we notice that the dependency on the
sparsity level s, is better, and therefore weaker signals can
be detected using linear measurements. Perhaps surprisingly
adaptive sensing is of no help in this scenario, and detection
procedures achieving the optimal performance can be non-
adaptive. Furthermore, the structure of the class C does not
help, provided the class is symmetric. This means that, like
in the single-entry measurement case, structure is of no
use for detection. However, this statement is true both for
adaptive and non-adaptive sensing paradigms, meaning that
the extra flexibility of adaptive sensing provides no advantage
for detection using linear measurements.

For the estimation problem the story is a bit different:
adaptive sensing can exhibit an advantage over non-adaptive
sensing, as documented in [29], [30], [31]. Furthermore struc-
tural information about S can be extremely helpful. In [18]
it is shown that for the unstructured case the same lower
bound as in Theorem II.2 applies in the context of linear
measurements (although the proof of the result requires a few
small modifications). Procedures achieving (or nearly achiev-
ing) this bound exist, namely [31], [32]. For the non-adaptive
sensing paradigm information theoretical lower bounds have
also been shown, namely the signal amplitude must exceed
a constant times \/%02 log n, as shown for instance in [33].
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The factor of n/m is the sensing energy per dimension and
v1ogn is needed to ensure that the signal is larger than
the largest noise contribution. Therefore adaptive sensing is
advantageous, especially in the typical case when the signal
dimension n is very large.

If the sparsity patterns exhibit some structure there are
also results contrasting adaptive and non-adaptive sensing, but
the story is far from complete. In [34] the authors devise
an algorithm that can identify the support set S with high
probability when S is an “interval” (see the last paragraph
of Section II) provided the signal magnitude is of the order
V/(n/m)(log(s,)/s2). Furthermore they prove a lower bound
of the form /(n/m)/s2, which matches the upper bound
apart from the +/log s,, factor (which does not appear to be an
artifact of the algorithm). Again, note that linear measurements
are advantageous over entry-wise ones, for which signal mag-
nitude must scale like /(n/m)(log(s,)/sn) for this problem.

IV. FINAL REMARKS

In this brief note we surveyed existing results over adaptive
sensing of sparse signals. We considered both entry-wise
and linear measurements and clarified in which situations
can adaptive sensing yield interesting gains over non-adaptive
designs. A clear picture exists for the unstructured scenario,
where one assumes only that the support set S is sparse. If
in addition one can make structural assumptions over S than
it is clear that support estimation is possible for even weaker
signals. With so few results available along those lines this
remains an interesting avenue for future research.
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