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Abstract—Bilevel signal x with maximal local rate of innova-
tion R is a continuous-time signal that takes only two values 0
and 1 and that there is at most one transition position in any time
period of 1/R. In this note, we introduce a recovery method for
bilevel causal signals x with maximal local rate of innovation R
from their uniform samples x∗h(nT ), n ≥ 1, where the sampling
kernel h is causal and positive on (0, T ), and the sampling rate
τ := 1/T is at (or above) the maximal local rate of innovation R.
We also discuss stability of the bilevel signal recovery procedure
in the presence of bounded noises.

I. INTRODUCTION

Let T > 0 and N be a nonnegative integer or infinity, and
denote by χE the indicator function on a set E. In this note,
we consider bilevel causal signals

x(t) :=

N∑
i=1

χ[t2i−1,t2i)(t) (1)

with unknown transition values (positions) ti, 1 ≤ i ≤ 2N ,
satisfying

ti < ti+1, 1 ≤ i < 2N ; (2)

and also a uniform generalized sampling process

x(t) 7−→ x ∗ h(t) 7−→ {x ∗ h(nT )}n≥1 (3)

with sampling kernel h being causal and uniform sampling
taken every T seconds. For the bilevel causal signal x in (1),
define its maximal local rate of innovation R by reciprocal
of the maximal positive number σ0 such that there is at most
one transition position ti, 1 ≤ i ≤ 2N , in any time period
[t, t+ σ0), t ≥ 0, that is,

R = sup
1≤i<2N

1

ti+1 − ti
. (4)

The concept of signals with finite rate of innovation was
introduced by Vetterli, Marziliano and Blu [1]. Examples of
signals with finite rate of innovation include streams of Diracs,
piecewise polynomials, band-limited signals, and signals in a
finitely-generated shift-invariant space [1]–[4]. In the past ten
years, the paradigm for reconstructing signals with finite rate
of innovation from their samples has been developed, see for
instance [1], [2] and [4]–[13] and references therein.

Precise identification of transition positions is important to
reach meaningful conclusions in many applications. Vetterli,

Marziliano and Blu show in [1] that a bilevel signal x defined
in (1) can be reconstructed from its samples (3) when the
sampling kernel h is the box spline χ[0,T ) (or the hat spline
(T − |t|)χ[−T,T )(t)) and the sample rate τ := 1/T is at (or
above) the maximal local rate of innovation R of the signal x.
In this note, we show that bilevel causal signals x defined in (1)
are uniquely determined from their samples x∗h(nT ), n ≥ 1,
in (3) if the sampling kernel h is causal and positive on (0, T ),
and the sample rate τ is at (or above) the maximal local rate
of innovation R, see Theorem 1. Our numerical simulations
indicate that the bilevel signal recovery procedure from noisy
samples x∗h(nT )+εn, n ≥ 1, is stable when there are limited
numbers of transition positions for the bilevel signal x.

II. RECOVERY OF BILEVEL CAUSAL SIGNALS

In this section, we provide a necessary condition on the
sampling kernel h such that bilevel signals x in (1) are
uniquely determined from their samples {x ∗ h(nT )} in (3).
Also in this section, we propose an algorithm for the bilevel
signal recovery.

The main theorem of this note is as follows:
Theorem 1: Let T > 0 and set τ = 1/T . If h is a causal

sampling kernel with h(t) > 0 on (0, T ), then any bilevel
causal signal x in (1) with maximal local rate of innovation
R being less than or equal to the sampling rate τ can be
recovered from its samples x ∗ h(nT ), n ≥ 1.

Proof: Let

H(t) =

∫ t

0

h(s)ds, 0 ≤ t ≤ T. (5)

Then H(0) = 0 and H is a strictly increasing function on
[0, T ) as h is strictly positive on (0, T ). Denote its inverse
function on [0, T ] by H−1 : [0, H(T )] 7−→ [0, T ].

Let x be a bilevel causal signal in (1) with transition
positions ti, 1 ≤ i ≤ 2N , satisfying (2). Then its first sample
y1 = x ∗ h(T ) is given by

y1 =

∫ ∞
0

x(t)h
(
T − t

)
dt =

∫ T

0

x(t)h
(
T − t

)
dt

=

∫ T

0

χ[t1,t2)(t)h
(
T − t

)
dt = H

(
max{T − t1, 0

})
,
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where the first two equalities hold by the causality of the signal
x and the sampling kernel h, and the fourth equality follows
from (1) and the observation that

ti ≥ t2 = (t2 − t1) + t1 ≥ 1/R+ 0 ≥ 1/τ = T, i ≥ 2

by (2), (4) and the assumption that R ≤ τ . Recall that H
is strictly increasing on [0, T ). Then there exists a transition
position in the time range [0, T ) if and only if y1 = x∗h(T ) >
0. Moreover, if it exists, it is given by

t1 = T −H−1(y1). (6)

Thus for a bilevel causal signal, we may determine from
its first sample x ∗ h(T ) the (non-)existence of its transition
position in the time period [0, T ) and further its transition
position in that time period if there is one.

Inductively, we assume that all transition positions of the
bilevel signal x in the time range [0, nT ) have been determined
from its samples yk = x ∗ h(kT ), 1 ≤ k ≤ n. We examine
four cases to determine its transition position in the time period
[nT, (n+ 1)T ) from the sample yn+1 = x ∗ h((n+ 1)T ).

Case 1: There is no transition position in [0, nT ).
In this case, following the above argument to determine

transition positions in the time range [0, T ), we have that
there exists a transition position in [nT, (n+1)T ) if and only
if yn+1 > 0. If there is, the transition position is the first
transition position t1 of the bilevel causal signal x, and

t1 = (n+ 1)T −H−1(yn+1). (7)

Case 2: The last transition position in [0, nT ) is t2i0−1 for
some i0 ≥ 1.

In this case, t2i0 ≥ nT and ti ≥ (n + 1)T for all i > 2i0.
Thus

yn+1 =

∫ (n+1)T

0

x(t)h
(
(n+ 1)T − t

)
dt

=

∫ (n+1)T

0

h
(
(n+ 1)T − t

)
×
( i0−1∑
i=1

χ[t2i−1,t2i)(t) + χ[t2i0−1,(n+1)T )(t)
)
dt

−
∫ (n+1)T

nT

h
(
(n+ 1)T − t

)
×χ[min(t2i0 ,(n+1)T ),(n+1)T )(t)dt.

Hence there exists a transition position t2i0 in the time range
[nT, (n+ 1)T ) if and only if

ỹn+1 := −yn+1 +

∫ (n+1)T

0

h
(
(n+ 1)T − t

)
×
( i0−1∑
i=1

χ[t2i−1,t2i)(t) + χ[t2i0−1,(n+1)T )(t)
)
dt (8)

is positive. Moreover if ỹn+1 > 0, the transition position t2i0
in the time range [nT, (n+ 1)T ) is determined by

t2i0 = (n+ 1)T −H−1(ỹk+1). (9)

Case 3: The last transition position in [0, nT ) is t2i0 for
some 1 ≤ i0 < N .

In this case, the (n+1)-th sample yn+1 = x ∗h((n+1)T )
is given by

yn+1 =

∫ nT

0

( i0∑
i=1

χ[t2i−1,t2i)(t)

)
h
(
(n+ 1)T − t

)
dt

+

∫ (n+1)T

min(t2i0+1,(n+1)T )

h
(
(n+ 1)T − t

)
dt. (10)

Thus there exists a transition value t2i0+1 ∈ [nT, (n+1)T ) if
and only if

ỹn+1 := yn+1 −
∫ nT

0

( i0∑
i=1

χ[t2i−1,t2i)(t)

)
h
(
(n+ 1)T − t

)
dt

(11)
is positive. Also we see that if ỹn+1 > 0, then the transition
value t2i0+1 can be obtained by

t2i0+1 = (n+ 1)T −H−1(ỹn+1). (12)

Case 4: The last transition position in [0, nT ) is t2N .
In this case, all transition positions of the bilevel signal x

have been recovered already. Hence the bilevel signal x is
fully recovered.

This completes our inductive proof.

From the above argument of Theorem 1, we can use the
following algorithm to recover a bilevel causal signal x in (1)
from its samples x ∗ h(nT ), 1 ≤ n ≤ K,where K > t2Nτ :

Bilevel Signal Recovery Algorithm:

Step 1: If all samples yn = x ∗ h(nT ), 1 ≤ n ≤ K, are
zero, then set x = 0 and stop; else find the first
nonzero sample, say yn0

> 0, the first transition
position of the bilevel signal x is located at t1 :=
n0 −H−1(yn0), and set n = n0.

Step 2: Do Step 2a if the last transition position in the
time range [0, nT ) is t2i0−1 for some i0 ≥ 1; do
Step 2b elseif the last transition position in the
time range [0, nT ) is t2i0 for some 1 ≤ i0 < N ;
and do Step 4 else.

– Step 2a: Define t2i0 as in (9) if ỹn+1 in (8)
is positive, else do Step 3.

– Step 2b: Define t2i0+1 as in (12) if ỹn+1 in
(11) is positive, else do Step 3.

Step 3: Set n = n + 1. Do Step 2 if n < K, and Step
4 if n = K.

Step 4: Stop as all transition positions ti, 1 ≤ i ≤ 2N ,
of the bilevel signal x are recovered.

We finish this section with a remark that the requirement
R ≤ τ in Theorem 1 can be relaxed to the following: There
is at most one transition position ti, 1 ≤ i ≤ 2N , in each
sampling range [nT, (n+ 1)T ), n ≥ 1.
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III. STABLE RECOVERY OF BILEVEL CAUSAL SIGNALS

In this section, we consider the maximal sampling error
supn |x ∗ h(nT ) − x̃ ∗ h(nT )| of two bilevel signals x and
x̃ when maximal error of their transition positions are small.
We then present some numerical simulations on recovery of a
bilevel signal x in (1) from its noisy samples {x∗h(nT )+εn}
in (3), where εn, n ≥ 1, are bounded noises of low levels.

First we notice that sampling procedure from bilevel signals
x to their samples {x ∗ h(nT )} are stable in bounded norm.

Theorem 2: Let T > 0, h be a bounded filter supported
in [0,MT ), x(t) =

∑N
i=1 χ[t2i−1,t2i)(t) be a bilevel causal

signal with maximal local innovation rate R ≤ τ := 1/T , and
x̃(t) =

∑N
i=1 χ[t2i−1+δ2i−1,t2i+δ2i) be a perturbation of the

bilevel signal x with perturbed transition positions {ti+δi}2Ni=1

satisfying

δ := sup
1≤i≤2N

|t̃i − ti| <
1

2R
.

Then the sample errors between x∗h(nT ) and x̃∗h(nT ), n ≥
1, are dominated by (bMRT c+ 2)‖h‖∞δ, i.e.,

|x∗h(nT )−x̃∗h(nT )| ≤
(
bMRT c+2

)
‖h‖∞δ, n ≥ 1, (13)

where ‖h‖∞ is the L∞ norm of the sampling kernel h.
Proof: By the assumption on maximal local innovation

rate R of the bilevel signal x and the maximal transition
position perturbation δ between bilevel signals x and x̃, we
have that

|x(t)− x̃(t)| =
2N∑
i=1

χti+[min(δi,0),max(δi,0))(t).

This together with the support assumption for the sampling
kernel h gives that

|x ∗ h(nT )− x̃ ∗ h(nT )|

=
∣∣∣ ∫ nT

0

(x(t)− x̃(t))h(kT − t)dt
∣∣∣

≤ ‖h‖∞
∫ nT

(n−M)T

2N∑
i=1

χti+[min(δi,0),max(δi,0))(t)dt.

Therefore

|x ∗ h(nT )− x̃ ∗ h(nT )|
≤ δ‖h‖∞#{ti : ti ∈ [(n−M)T − δ, nT + δ)}
≤ δ‖h‖∞(b(MT + 2δ)/(1/R)c+ 1)

≤ δ‖h‖∞(bMRT c+ 2),

where the first inequality holds as ti ∈ [(n−M)T − δ, nT +
δ) if ti + [min(δi, 0),max(δi, 0)) and [(n −M)T, nT ) have
nonempty intersection, the second inequality is true as ti+1−
ti ≥ 1/R for all 1 ≤ i < 2N , and the last inequality follows
from the assumptions that δ < 1/(2R) and R ≤ τ . This
proves the sampling error estimate (13) between the bilevel
causal signals x and x̃.

Now we consider the corresponding nonlinear inverse prob-
lem how to recover a bilevel signal x from its noisy samples

{x∗h(nT )+ εn} in (3), where εn, n ≥ 1, are bounded noises.
Let us start by looking at two examples.

Example 1: Take x1(t) =
∑∞
i=1 χ[2i−1,2i)(t) as the orig-

inal bilevel signal and h1(t) = χ[0,2)(t) as the sam-
pling kernel. For sufficiently small ε > 0, define x1,ε =∑∞
i=1 χ[(1+ε)(2i−1),2(1+ε)i)(t). Then for every i ≥ 1, the i-

th transition positions of bilevel signals x1 and x1,ε are i and
i(1+ ε) respectively (hence their difference is iε that could be
arbitrary large for sufficiently large i), but on the other hand,
maximal sampling errors for those two bilevel signals x1 and
x1,ε are bounded by ε,

|x1,ε ∗ h1(n)− x1 ∗ h1(n)| = |x1,ε ∗ h1(n)− 1| ≤ ε, n ≥ 1.

This leads to instability of the recovery procedure from
samples {x1 ∗ h1(n)} to the bilevel signal x1 in the presence
of bounded noises.

Example 2: Take x1 and h1 in Example 1 as the original
bilevel signal and the sampling kernel respectively. Define
x2,ε =

∑∞
i=1 χ[2i−1+ε,2i+ε)(t) for sufficiently small ε > 0.

Then for every i ≥ 1 the difference between i-th transition
positions of bilevel signals x1 and x2,ε is always ε, and
there is no difference between their n-th samples except
for n = 1. This suggests that the recovery procedure from
samples {x1 ∗ h1(n)} to the bilevel signal x1 is not locally-
behaved and the reconstruction error on transition positions
could disseminate.

From the above two examples, we see that the nonlinear
recovery procedure from samples {x∗h(n)} to bilevel signals
x is unstable in the presence of bounded noises and that it
is globally-behaved in general. In this note, we present some
initial numerical simulations with small numbers of transition
positions, sampling rate over maximal local rate of innovation
and very low levels of noise. Detailed noise performance
analysis and stable recovery in the presence of other types
of noises will be discussed in the coming paper.

Take a sampling kernel h0(t) = t+1
2 χ[0,1)(t)+(2t−1)χ[1,2),

and a bilevel signal

x0(t) = χ[0.3791,1.9885)(t) + χ[3.1306,4.3440)(t)

+χ[5.7552,7.1820)(t) + χ[8.7423,10.1052)(t)

+χ[11.4200,12.6884)(t) (14)

containing 10 transition positions, see Figure 1. Here transition

Fig. 1. Bi-level signal x0 (left) and sampling kernel h0 (right)

positions t0i , 1 ≤ i ≤ 10, of the bilevel signal x0 are randomly
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selected so that t0i − t0i−1 ∈ [1.1, 1.9], 2 ≤ i ≤ 10. The bilevel
signal x0 in (14) has 0.8756 as its maximal local rate of
innovation. We sample the convolution x0 ∗ h1 between x0
and h1 every second, which generates the sampling vector
Y0 = (x0 ∗ h(1), . . . , x0 ∗ h(14)), and then we add bounded
random noise to the sampling vector

Yδ = Y0 + δ(ε1, . . . , ε14)

with noise level δ ≥ 0, where εi ∈ [−1, 1], 1 ≤ i ≤ 14, are
random noises. We apply the bilevel signal recovery algorithm
in Section II with some technical adjustment when the recon-
structed transition position is approximately located at some
sampling positions, and denote the first ten transition positions
of the reconstructed bilevel signal xδ by t1,δ, . . . , t10,δ . Define
maximal error of first ten transition positions by

P (δ) = max
1≤i≤10

|ti,δ − t0i |.

We perform the bilevel signal recovery algorithm in Sec-
tion II 50 times for every noise level δ ∈ [0, 0.03]. The
maximal value of P (δ) after performing the algorithm 50
times is plotted in Figure 2 with solid line, while the av-
erage value of P (δ) plotted with dashed line. Notice that
max1≤n≤14 |x0 ∗ h1(n)| = 0.9796. Thus the maximal error
P (δ) of transition positions is less than 10% when the noise
level ε = maxn≥1 |εn| is at (or below) 2% of the maximal
sample value maxn≥1 |x0 ∗ h0(nT )|, while some transition
positions could not be recovered approximately when the noise
level is above 3%. This indicates that our algorithm to recover
the bilevel signal from its noisy samples is “reliable” only for
low level of bounded noises. We doubt that it is because of the
instability of the nonlinear recovery procedure in the presence
of bounded noises. We will do the detailed noise performance
analysis in the coming paper.

Fig. 2. Maximal transition position error

IV. CONCLUSION

In this note, we show that bilevel causal signals x could
be reconstructed from their samples x ∗ h(nT ), n ≥ 1, if
the sampling kernel h is causal and positive on (0, T ) and
if the sample rate is at (or above) the maximal local rate of
innovation of the bilevel signal x. We also propose a stable

bilevel signal recovery algorithm in the presence of bounded
noise if the number of transition positions of bilevel signals is
not large. We remark that the bilevel signal recovery algorithm
proposed in this note is applicable when uniform sampling x∗h
every T second replaced by nonuniform sampling {x∗h(sn)}
with sampling density supn≥1 |sn+1 − sn| ≤ T , and bilevel
causal signal x =

∑N
i=1 χ[t2i−1,t2i)(t) with maximal local

rate of innovation R ≤ 1/T replaced by box causal signals
x =

∑N
i=1 ciχ[t2i−1,t2i)(t) with maximal local rate of innova-

tion R ≤ 1/(2T ), where for every 1 ≤ i ≤ N , ci is height of
the box located on the time period [t2i−1, t2i).
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