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Abstract—Recently, it has been shown that for the setup
of compressed sensing with Gaussian measurements that Σ∆
quantization can be effectively incorporated into the sensing
mechanism [1]. In contrast to independently quantized measure-
ments, the resulting schemes yield better reconstruction accuracy
with a higher number of measurements even at a constant
number of bits per signal. The original analysis of this method,
however, crucially depends on the rotation invariance of the
Gaussian measurements and hence does not directly generalize
to other classes of measurements. In this note, we present a
refined analysis that allows for a generalization to arbitrary sub-
Gaussian measurements.

I. INTRODUCTION

Compressed Sensing [2], [3] is a recent paradigm in sig-
nal processing based on the observation that many natural
signals are approximately sparse in suitable representation
systems, that is, they have only few significant coefficients.
The underlying idea is that such signals are intrinsically low-
dimensional, so the number of linear measurements necessary
to allow for recovery of the signal should be considerably
smaller than the signal dimension. Here taking m linear
measurements of a signal x ∈ RN is to be understood as con-
sidering the measurement vector y = Ax, where A ∈ Rm×N
is a fixed measurement matrix. As it turns out, a number of
measurements proportional to s log(N/s) can allow for stable
and robust recovery of signals with s non-vanishing entries
in dimension N , provided the measurement matrix is suitably
chosen. As no deterministic constructions for such matrices
are known, this choice typically involves a random matrix
construction.

Note that the resulting linear system to be solved to recover
the signal is underdetermined, so the regularizing assumption
of sparsity is crucial. However, once it has been determined
which s coefficients are significant, the system becomes re-
dundant by at least a logarithmic factor.

In order for the signal to be processed digitally, the mea-
surements must, in a second step, be quantized. That is, the
measurement vector, whose entries can a priori take arbitrary
real values, must be represented by a sequence of values
from a given finite alphabet. At this stage, the redundancy
mentioned above can be exploited by applying a Sigma-
Delta quantization scheme. Such coarse quantization schemes,

originally designed for quantizing oversampled bandlimited
signals [4], translate redundancy in a signal representation
to more accurate quantized representations even though the
alphabet size representing each sample is fixed. The idea is that
the quantized representations are chosen dynamically using a
feedback loop such that the quantization error made in a given
sample partly compensates for the error made in previous
samples.

This idea has been transferred to the setup of quantizing
frame representations in RN in [5]. As it turned out in
subsequent works, higher accuracy can be achieved if instead
of the Moore-Penrose pseudoinverse of the frame matrix, the
so called canonical dual frame, an alternative dual frame,
the so-called Sobolev dual is used for reconstruction [6].
In compressed sensing, once the support is identified, the
measurement vector is nothing but a frame representation of
the signal, so similar ideas apply.

For measurement matrices with independent standard nor-
mal entries, this scenario has been analyzed in [1]. For
recovery, the authors proceed via a two-stage approach. In
a first stage, standard compressed sensing techniques are used
to estimate the support of the signal from the quantized
measurements. In a second step, once the support has been
identified, a Sobolev dual is used to obtain a more precise
estimate of the signal coefficients.

The analysis in [1] is specific to Gaussian measurements. In
this note, we generalize their results to arbitrary sub-Gaussian
measurements. This more general setup includes important
examples like Bernoulli matrices.

II. SIGMA-DELTA QUANTIZATION

A. Greedy quantization schemes

Denote by A the 2L level mid-rise alphabet

A =
{
± (2j + 1)δ/2, j ∈ {0, ..., L− 1}

}
and let Q : R 7→ A denote the scalar quantizer, which is
defined via its action

Q(x) = arg min
q∈A
|x− q|.
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The rth order greedy Σ∆ quantization scheme, defined via

qi = Q
( r∑
j=1

(−1)j−1
(
r

j

)
ui−j + yi

)
ui =

r∑
j=1

(−1)j−1
(
r

j

)
ui−j + yi − qi, (1)

maps a sequence of inputs (yi)
m
i=1 to a sequence (qi)

m
i=1 whose

elements take on values from A. Note that condition (1) can
be rewritten as

(∆ru)i = yi − qi,

where ∆ is the finite difference operator.
It is easily seen by induction that for bounded input se-

quences ‖y‖∞ < (L− 2r−1 − 3/2), such schemes satisfy

‖u‖∞ ≤ δ/2.

In other words, the scheme is stable, that is, its state sequence
remains bounded. Note that to satisfy this stability condition,
the number of levels L must increase with r.

B. Sigma-Delta error analysis

If y = Ex ∈ Rm is a vector of frame coefficients that
is Σ∆ quantized to yield the vector q ∈ Am, then linear
reconstruction of x from q using some dual frame F of E
(i.e., FE = I) produces the estimate x̂ := Fq. We would like
to control the reconstruction error η := x − x̂. Writing the
state variable equations (II-A) in vector form, we have

Dru = y − q,

where D is the m × m difference matrix with entries given
by

Dij =

 1 i = j
−1 i = j + 1
0 otherwise

.

Thus,
η = x− Fq = F (y − q) = FDru.

Working with with stable Σ∆ schemes, one can control ‖u‖2
via ‖u‖∞. Thus, it remains to bound the operator norm
‖FDr‖ := ‖FDr‖`m2 7→`k2 and a natural choice for F is

F := arg min
G:GE=I

‖GDr‖ = (D−rE)†D−r. (2)

This so-called Sobolev dual frame was first proposed in [6].
Here A† := (A∗A)−1A∗ is the k × m Moore-Penrose (left)
inverse of the m× k matrix A. Since (2) implies that FDr =
(D−rE)†, the singular values of D−rE will play a key role
in this paper.

An important property of the matrix D is given in the
following proposition .

Proposition 1 ([1], Proposition 3.1): There are constants
c1, c2 depending only on r such that the singular values of
the matrix D−r satisfy

c1(r)

(
m

j

)r
≤ σj(D−r) ≤ c2(r)

(
m

j

)r
.

III. PRELIMINARIES

Here and throughout, x ∼ D denotes that the random
variable x is drawn according to a distribution D. Furthermore,
N (0, σ2) denotes the zero-mean Gaussian distribution with
variance σ2. The following definition provides a means to
compare the tail decay of two distributions.

Definition 2: If two random variables η ∼ D1 and ξ ∼ D2

satisfy P (|η| > t) ≤ KP (|ξ| > t) for some constant K
and all t ≥ 0, then we say that η is K-dominated by ξ (or,
alternatively, by D2).

Definition 3: A random variable is sub-Gaussian with pa-
rameter c > 0 if it is e-dominated by N (0, c2).

Remark 4: One can also define sub-Gaussian random vari-
ables via their moments or, in case of zero mean, their
moment generating functions. See [7] for a proof that all these
definitions are equivalent.

Remark 5: Exmaples of sub-Gaussian random variables in-
clude Gaussian random variables, all bounded random vari-
ables (such as Bernoulli), and their linear combinations.

Definition 6: We say that a matrix E is sub-Gaussian with
parameter c if its entries are independent sub-Gaussian random
variables with mean zero, variance one, and parameter c.

IV. MAIN RESULTS

In this section, we present our main results, generalizing
the theorems of [1] on the singular values of D−rE to
sub-Gaussian matrix entries and leveraging these results to
establish recovery guarantees from Σ∆ quantized compressed
sensing measurements.

Proposition 7: Let E be an m × k sub-Gaussian matrix
with parameter c, let S = diag(s) be a diagonal matrix, and
let V be an orthonormal matrix, both of size m×m. Further,
let r ∈ Z+ and suppose that sj ≥ Cr1

(
m
j

)r
, where C1 is

a positive constant that may depend on r. Then there exist
constants C2, C3 > 0 (depending on c and C1) such that for
0 < α < 1 and λ := m

k ≥ C
1

1−α
2

P
(
σmin( 1√

m
SV ∗E) ≤ λα(r−1/2)

)
≤ 2 exp(−C3m

1−αkα).

In particular, C3 depends only on c, while C2 can be expressed
as f(c)C

− 2r
2r−1

1 provided C1 ≤ 1/2.
Proof: The matrix SV ∗E has dimensions m and k, so

by the Courant min-max principle applied to the transpose
one has

σmin(SV ∗E) = min
W⊂Rm

dimW=m−k+1

sup
z∈W :‖z‖2=1

‖E∗V Sz‖2

Noting that, for m ≥ k̃ := C4m
1−αkα > k, where the

constant C4 will be determined later, each m − k + 1-
dimensional subspace intersects the span Vk̃ of the first k̃
standard basis vectors in at least a k̃ − k + 1-dimensional
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space, this expression is bounded from below by

min
W⊂V

k̃

dimW=k̃−k+1

sup
z∈W :‖z‖2=1

‖E∗V Sz‖2

≥ min
W⊂V

k̃

dimW=k̃−k+1

sup
z∈W :‖z‖2=sk̃

‖E∗V z‖2

= min
W⊂Rk̃

dimW=k̃−k+1

sup
z∈W :‖z‖2=1

sk̃‖E
∗V P ∗

k̃
z‖2.

(3)

The inequality follows from the observation that Vk̃ is invariant
under S and the smallest singular value of S|V

k̃
is sk̃. In the

last step, Pk̃ denotes the projection of an m-dimensional vector
onto its first k̃ components. We note that (3), again by the
Courant min-max principle, is equal to

sk̃σk(E∗V P ∗
k̃

) = sk̃σmin(Pk̃V
∗E) = sk̃ inf

y∈Sk−1
‖Pk̃V

∗Ey‖2

Now, as E‖Pk̃V
∗Ey‖22 = k̃,

inf
y∈Sk−1

‖Pk̃V
∗Ey‖22

≥
(
k̃ − sup

y∈Sk−1

∣∣‖Pk̃V ∗Ey‖22 − E‖Pk̃V
∗Ey‖22

∣∣).
Thus, noting that

λα(r−1/2)

sk̃
< mα(r−1/2)k−α(r−1/2)C−r1 m−rk̃r

= C−r1 C
r− 1

2
4

√
k̃√
m

and that by choosing C4 = min( 1
2C

2r
2r−1

1 , 12 ) we ensure that
1− C−2r1 C2r−1

4 ≥ 1
2 ,

P(σmin( 1√
m
SV ∗E) ≤ λα(r−1/2))

≤ P( sup
y∈Sk−1

∣∣‖ 1√
m
Pk̃V

∗Ey‖22 − E‖ 1√
m
Pk̃V

∗Ey‖22
∣∣ ≥ k̃

2m
).

(4)

Note that this choice of C4 also ensures k̃ ≤ m, which is
required above. We will estimate (4) using the chaos bounds
of [9], similarly to the proof of [9, Thm. A.1]. Indeed, we can
write

1√
m
Pk̃V

∗Ey = Wyξ,

where ξ is a vector of length km with independent subgaussian
entries of mean zero and variance 1, and

Wy =
1√
m
Pk̃V

∗


yT 0 · · · 0
0 yT · · · 0
...

...
...

...
0 · · · 0 yT

 .

In order to apply [9, Thm. 3.1], we need to estimate, for
A = {Wy : y ∈ Sk−1}, dF (A) := sup

A∈A
‖A‖F , d2→2(A) :=

sup
A∈A
‖A‖2→2, and the Talagrand functional γ2(A, ‖ · ‖2→2)

(see [8] for its definition). We obtain for A = Wy ∈ A:

‖A‖2F =
1

m

k∑
j=1

k̃,m∑
`1,`2=1

y2jV
2
`1,`2 =

k̃

m
, so dF (A) =

√
k̃

m
.

Furthermore, we have, for z ∈ Rk,

‖Wz‖2→2 =

∥∥∥∥∥∥∥∥∥
1√
m
Pk̃V

∗


zT 0 · · · 0
0 zT · · · 0
...

...
...

...
0 · · · 0 zT


∥∥∥∥∥∥∥∥∥
2→2

≤

∥∥∥∥∥∥∥∥∥
1√
m


zT 0 · · · 0
0 zT · · · 0
...

...
...

...
0 · · · 0 zT


∥∥∥∥∥∥∥∥∥
2→2

,

so the quantities d2→2(A) and γ2(A, ‖·‖2→2) can be estimated
in exact analogy to [9, Thm. A.1]. This yields d2→2(A) = 1√

m

and γ2(A, ‖·‖2→2) ≤ C5

√
k
m for some constant C5 depending

only on c. With these estimates, we obtain for the quantities
E, U , V in [9, Thm. 3.1]

E ≤(2C5 + 2)

√
kk̃

m

U ≤ 1

m

V ≤(C5 + 1)

√
k̃

m
,

so the resulting tail bound reads

P
(

sup
y∈Sk−1

∣∣‖ 1√
m
Pk̃V

∗Ey‖22 − E‖ 1√
m
Pk̃V

∗Ey‖22
∣∣ ≥

c1(2C5 + 2)

√
kk̃

m
+ t
)

≤ e−c2 min
(

t2m2

(C5+1)k̃
,mt
)
.

where c1 and c2 are the constants depending only on c as
they appear in [9, Thm. 3.1]. Note that k = k̃ λ

−(1−α)

C4
, so for

oversampling rates λ >
(
(4c1(2C5 + 2))2/C4

) 1
1−α =: C

1
1−α
2 ,

we obtain c1E ≤ k̃
4m and hence, choosing t = k̃

4m , we obtain
the result

P( sup
y∈Sk−1

∣∣‖ 1√
m
Pk̃V

∗Ey‖22 − E‖ 1√
m
Pk̃V

∗Ey‖22
∣∣ ≥ k̃

2m
)

≤ e−C3k̃

where, as desired, the constant C3 := c2
16(C5+1) depends only

on the subgaussian parameter c.
Analogously to [1], we can use the above bounds to estab-

lish guarantees for recovery from Σ∆ quantized compressed
sensing measurements.

Theorem 8: Let Φ̃ be an m×N sub-Gaussian matrix with
parameter c and set Φ := 1√

m
Φ̃, let r ∈ Z+, and let 0 < α <
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1. Then exist constants C6, C7, C8, C9 depending only on r
and c such that the following holds. Suppose that

λ :=
m

k
≥
(
C6 log(eN/k)

) 1
1−α

.

Consider the 2L-level rth order greedy Σ∆ schemes with
step-size δ, denote by q the quantization output resulting
from Φz where z ∈ RN , and denote by ∆ a standard
compressed sensing decoder. Then with probability exceeding
1−2e−C7m

1−αkα for all z ∈ ΣNk having min
j∈supp(z)

|zj | > C8δ:

1) the support of z, T , coincides with the support of the
best k-term approximation of ∆(q).

2) denoting by E and F the sub-matrix of Φ corresponding
to the support of z and its rth order Sobolev dual
respectively, and by x ∈ Rk the restriction of z to its
support, we have

‖x− Fq‖2 ≤ C9λ
−α(r−1/2)δ.

The proof traces the same steps as in [1]. Namely, 1) is a direct
consequence of standard RIP-based recovery guarantees and
2) follows from a union bound over all submatrices consisting
of k columns of Φ. This union bound determines the condition
on λ and the probability. As the all the proof ingredients
established above are identical to the corresponding results
in [1], we omit the details.

V. CONCLUSION

Theorem 8 is a complete generalization of the main result of
[1] to the scenario of sub-Gaussian matrices. Up to constants,
the resulting embedding dimensions are the same as in the
Gaussian case.
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